
Real-Time Workshop
Embedded Coder
For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 4

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder User’s Guide
© COPYRIGHT 2002–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
July 2002 Online only Version 3.0 (Release 13)
December 2003 Online only Revised for Version 3.2 (Release 13SP1+)
June 2004 Online only Revised for Version 4.0 (Release 14)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)

Contents

Getting Started

1
What Is Real-Time Workshop Embedded Coder? 1-2

Real-Time Workshop Embedded Coder Feature
Summary . 1-3

What You Need to Know to Use This Product 1-5
Prerequisites . 1-5
Real-Time Workshop Embedded Coder Documentation

Collection . 1-5
Related Documentation . 1-6

Installing Real-Time Workshop Embedded Coder 1-7

Real-Time Workshop Embedded Coder Demos 1-8

Data Structures and Program Execution

2
Data Structures and Code Modules 2-2

Real-Time Model Data Structure . 2-2
Code Modules . 2-4
Generating the Main Program . 2-8

Program Execution . 2-10

Stand-Alone Program Execution . 2-11
Main Program . 2-12
rt_OneStep . 2-13

v

VxWorks Example Main Program Execution 2-20
Overview . 2-20
Task Management . 2-20

Model Entry Points . 2-22
model_step . 2-22
model_initialize . 2-24
model_terminate . 2-24
model_SetEventsForThisBaseStep 2-25

The Static Main Program Module 2-26
Rate Grouping and the Static Main Program 2-27
Modifying the Static Main Program 2-28

Rate Grouping Compliance and Compatibility
Issues . 2-31
Main Program Compatibility . 2-31
Making Your S-Functions Rate Grouping Compliant 2-31
Listing 1: Outputs Code Generation Without Rate

Grouping . 2-32
Listing 2: Outputs Code Generation With Rate

Grouping . 2-34

Code Generation Options and Optimizations

3
Accessing the ERT Target Options 3-3

Viewing ERT Target Options in the Configuration
Parameters Dialog or Model Explorer 3-4

Support for Continuous Time Blocks and Solvers 3-5
Continuous Block Support . 3-5
Continuous Solver Support . 3-5

Mapping Application Requirements to Configuration
Options . 3-6

Guide to the ERT Target Options . 3-13

vi Contents

Real-Time Workshop Pane . 3-14
Comments Pane . 3-18
Symbols Pane . 3-21
Interface Pane . 3-32
Templates Pane . 3-39
Data Placement Pane . 3-41
Data Type Replacement Pane . 3-43
Memory Sections Pane . 3-45
Optimization Pane . 3-48

Tips for Optimizing the Generated Code 3-52
Use Auto-Optimized Targets . 3-52
Use Configuration Wizard Blocks . 3-52
Set Hardware Implementation Parameters Correctly 3-53
Remove Unnecessary Initialization Code 3-54
Generate Pure Integer Code If Possible 3-55
Disable MAT-File Logging . 3-55
Use the Virtualized Output Ports Optimization 3-56
Use Stack Space Allocation Options 3-57
Using External Mode with the ERT Target 3-59

Generating a Code Generation Report 3-61

Automatic S-Function Wrapper Generation 3-64
S-Function Wrapper Generation Limitations 3-65
Generating an S-Function Wrapper 3-66

Exporting Function-Call Subsystems 3-68
Exported Subsystems Demo . 3-68
Additional Information . 3-68
Requirements for Exporting Function-Call Subsystems . . 3-69
Techniques for Exporting Function-Call Subsystems 3-71
Optimizing Exported Function-Call Subsystems 3-72
Exporting Function-Call Subsystems That Depend on

Elapsed Time . 3-72
Function-Call Subsystem Export Example 3-73
Function-Call Subsystems Export Limitations 3-76

Nonvirtual Subsystem Modular Function Code
Generation . 3-78
Configuring Nonvirtual Subsystems for Generating

Modular Function Code . 3-79

vii

Examples of Modular Function Code for Nonvirtual
Subsystems . 3-83

Nonvirtual Subsystem Modular Function Code
Limitations . 3-89

Custom Storage Classes

4
Introduction to Custom Storage Classes 4-3

Custom Storage Classes and Simulink Data Objects . . 4-5
Predefined CSCs . 4-6
Setting the Custom Storage Class Properties 4-9
Generating Code with CSCs . 4-10

Designing Custom Storage Classes 4-15
Custom Storage Class Designer Overview 4-15
Using the Custom Storage Class Designer 4-17

Creating Packages with CSC Definitions 4-30

Defining Advanced Custom Storage Class Types 4-34
Create Your Own Parameter and Signal Classes 4-34
Create a Custom Attributes Class for Your CSC

(Optional) . 4-34
Write TLC Code for Your CSC . 4-35
Register Custom Storage Class Definitions 4-35

GetSet Custom Storage Class for Data Store Memory . . 4-38
Code Generation Example . 4-39

Requirements and Restrictions for Use of CSCs 4-41
Setting Related Code Generation Options 4-41
Restrictions . 4-41
Use of CSCs with Model Referencing 4-41

Older Custom Storage Classes (Prior to Release 14) . . . 4-43

viii Contents

Simulink.CustomParameter Class . 4-43
Simulink.CustomSignal Class . 4-44
Instance Specific Attributes for Older Storage Classes . . . 4-47
Assigning a Custom Storage Class to Data 4-49
Code Generation with Older Custom Storage Classes 4-49
Compatibility Issues for Older Custom Storage Classes . . 4-50

Memory Sections

5
Introduction to Memory Sections 5-2

Memory Sections Demo . 5-2
Additional Information . 5-2

Requirements for Defining Memory Sections 5-4

Defining Memory Sections . 5-6
Specifying the Memory Section Name 5-7
Specifying a Qualifier for Custom Storage Class Data

Definitions . 5-7
Specifying Comment and Pragma Text 5-7
Surrounding Individual Definitions with Pragmas 5-8
Including Identifier Names in Pragmas 5-8

Assigning Memory Sections to Custom Storage
Classes . 5-9

Applying Memory Sections to Model-Level Functions
and Internal Data . 5-11

Applying Memory Sections to Atomic Subsystems 5-14

Examples of Generated Code with Memory Sections . . 5-17
Model-Level Data Structures . 5-19
Model-Level Functions . 5-20
Subsystem Function . 5-21

ix

Advanced Code Generation Techniques

6
Introduction . 6-3

Code Generation with User-Defined Data Types 6-5
Specifying Type Definition Location 6-6
Using User-Defined Data Types for Code Generation 6-7

Customizing the Target Build Process with the
STF_make_rtw Hook File . 6-8
File and Function Naming Conventions 6-8
STF_make_rtw_hook.m Function Prototype and

Arguments . 6-9
Applications for STF_make_rtw_hook.m 6-12
Using STF_make_rtw_hook.m for Your Build Procedure . . 6-13

Customizing the Target Build Process with
sl_customization.m . 6-14
Registering Build Process Hook Functions Using

sl_customization.m . 6-16
Variables Available for sl_customization.m Hook

Functions . 6-17
Example Build Process Customization Using

sl_customization.m . 6-17

Auto-Configuring Models for Code Generation 6-19
Utilities for Accessing Model Configuration Properties . . . 6-19
Automatic Model Configuration Using

ert_make_rtw_hook . 6-20
Using the Auto-Configuration Utilities 6-22

Generating Efficient Code with Optimized ERT
Targets . 6-23
Default ERT Target . 6-24
Optimized Fixed-Point ERT Target 6-24
Optimized Floating-Point ERT Target 6-26
Using the Optimized ERT Targets . 6-28

Custom File Processing . 6-32

x Contents

Custom File Processing Components 6-32
Custom File Processing User Interface Options 6-33
Code Generation Template (CGT) Files 6-35
Using Custom File Processing (CFP) Templates 6-39
CFP Template Structure . 6-40
Generating Source and Header Files with a CFP

Template . 6-41
Code Template API Summary . 6-50
Generating Custom File Banners . 6-53

Optimizing Your Model with Configuration Wizard
Blocks and Scripts . 6-59
Configuration Wizards vs. Auto-Configuring Targets 6-60
Adding a Configuration Wizard Block to Your Model 6-60
Using Configuration Wizard Blocks 6-63
Creating a Custom Configuration Wizard Block 6-63

Replacement of STF_rtw_info_hook Mechanism 6-71

Optimizing Task Scheduling for RTOS Targets 6-72
Using rtmStepTask . 6-73
Suppressing the Redundant Scheduling Calls 6-74

Requirements, Restrictions, Target Files

7
Requirements and Restrictions . 7-2

System Target File and Template Makefiles 7-4

Index

xi

xii Contents

1

Getting Started

What Is Real-Time Workshop
Embedded Coder? (p. 1-2)

Describes the features of Real-Time
Workshop® Embedded Coder.

Real-Time Workshop Embedded
Coder Feature Summary (p. 1-3)

Summary of the features of
Real-Time Workshop Embedded
Coder.

What You Need to Know to Use This
Product (p. 1-5)

Prerequisite experience for use of
Real-Time Workshop Embedded
Coder; summary of related
documentation.

Installing Real-Time Workshop
Embedded Coder (p. 1-7)

Installation instructions.

Real-Time Workshop Embedded
Coder Demos (p. 1-8)

Information on interactive demos
and example code provided to help
you learn about Real-Time Workshop
Embedded Coder.

1 Getting Started

What Is Real-Time Workshop Embedded Coder?
Real-Time Workshop Embedded Coder is a separate, add-on product for
use with Real-Time Workshop. It is intended for use in embedded systems
development. Real-Time Workshop Embedded Coder generates code that is
easy to read, trace, and customize for your production environment.

Real-Time Workshop Embedded Coder provides a framework for the
development of production code that is optimized for speed, memory usage,
and simplicity. Real-Time Workshop Embedded Coder generates optimized
ANSI-C or ISO-C code for fixed-point and floating-point microprocessors.
It extends the capabilities provided by Real-Time Workshop to support
specification, integration, deployment, and testing of production applications
on embedded targets. Real-Time Workshop Embedded Coder addresses
targeting considerations such as RAM, ROM, and CPU constraints, code
configuration, and code verification.

The Embedded Real-Time (ERT) target provided by Real-Time Workshop
Embedded Coder is designed for customization. Most users want to generate
code for a particular microprocessor or development board, and to deploy the
code on target hardware with a cross-development system. To do this, some
modifications to the ERT target files are required. This document and its
companion, the Developing Embedded Targets document, describe how to
customize the ERT target for your production requirements.

For large-scale, multi-model projects involving teams of engineers, Real-Time
Workshop Embedded Coder offers Module Packaging Features (MPF) you can
use to control the number and organization of files generated, the location
of global identifiers, registration of user-defined data types, customized
comments, and the location of target variables.

1-2

Real-Time Workshop Embedded Coder Feature Summary

Real-Time Workshop Embedded Coder Feature Summary
In addition to supporting the features of Real-Time Workshop, Real-Time
Workshop Embedded Coder:

• Generates ANSI/ISO C or C++ code and executables from Simulink® and
Stateflow® models with memory usage, execution speed, and readability
comparable to handwritten code

• Extends Real-Time Workshop and Stateflow Coder with the optimizations
and code configuration features essential for production deployment

• Supports all Simulink data objects and data dictionary capabilities,
including user-defined storage classes, types, and aliases

• Provides an intuitive graphical user interface for creating custom data

• Concisely partitions multirate code for efficient scheduling with or without
a real-time operating system (RTOS)

• Provides a rich set of commenting capabilities to trace code to models and
requirements

• Verifies code by automatically importing it into Simulink for
software-in-the-loop testing

• Generates code documentation that is integrated with the Simulink Model
Explorer and hyperlinked to the model

• Provides a Model Advisor that checks your model configuration and offers
advice on how to optimize or tune a configuration set based on your stated
goals or style.

• Generates an extensible main program based on information you provide
for deploying the code in your real-time environment

• Generates single-rate or multirate code using periodic sample times
specified in a model

• Applies a strategy called rate grouping for multi-rate, multitasking models,
which generates separate functions for the base rate task and for each
sub-rate task in the model

• Provides an option to easily transition between the Real-Time Workshop
generic real-time (GRT) target and the Real-Time Workshop Embedded
Coder embedded real-time (ERT) target

1-3

1 Getting Started

• Provides extensible module packaging features that let you package
generated code to comply with specific software styles and standards

• Provides capabilities for verifying generated code, including the
ability to import generated code back into Simulink as an S-function
for software-in-the-loop testing with a plant model, generation of
user-controlled comments and descriptions to improve code readability and
traceability, inclusion of requirements in generated code, and persistent
identifier names for minimizing code differences between model revisions

• Documents generated code in an HTML report that comprehensively
describes code modules and model configuration settings applied during
code generation

• Supports international (non-US-ASCII) characters encountered during code
generation when found in Simulink block names and block descriptions,
user comments on Stateflow diagrams, Stateflow object descriptions,
custom TLC files, and code generation template files. For details
about international character support, see Support for International
(Non-US-ASCII) Characters in the Real-Time Workshop documentation.

1-4

What You Need to Know to Use This Product

What You Need to Know to Use This Product

Prerequisites
To use Real-Time Workshop Embedded Coder, you should have basic
familiarity with MATLAB®, Simulink, and Real-Time Workshop. If you have
not done so, you should read:

• The tutorials in the document Getting Started with Real-Time Workshop.
The tutorials provide hands-on experience in configuring models for code
generation and generating code.

• The “Program Architecture” and “Models with Multiple Sample Rates”
chapters of the Real-Time Workshop documentation. These sections give a
general overview of the architecture and execution of programs generated
by Real-Time Workshop.

Real-Time Workshop Embedded Coder
Documentation Collection
The Real-Time Workshop Embedded Coder documentation collection consists
of the following:

Document Description

User’s Guide Describes ERT model execution, timing, and
task management; explains how to interface
to and call model code; describes default
ERT code generation options; and discusses
advanced configuration options.

Module Packaging Features Explains how to use the Module Packaging
Features.

Developing Embedded
Targets

Describes requirements and implementation
details for creating custom embedded targets
based on the supplied ERT.

1-5

1 Getting Started

Related Documentation
You may be interested in the following documentation, especially if you are
planning to implement custom embedded targets:

Document Description

Real-Time Workshop User’s Guide:
Writing S-Functions for Real-Time
Workshop

Discusses inlining and code
generation issues relevant to device
drivers and other S-functions

Real-Time Workshop User’s Guide:
Data Exchange APIs

Explains how to interface signals
and parameters within generated
code to your own code; combine code
generated from multiple models into
a single system; and implement
external mode communication with
your own low-level protocol layer.

Target Language Compiler Provides details about the Target
Language Compiler (TLC) needed
to make non-trivial modifications to
the ERT system target file, use TLC
hooks into the build process, utilize
information from the model.rtw file,
implement inlined device drivers, or
pass information into or out of the
TLC phase of the build process.

Writing S-Functions Explains how to write fully inlined
S-functions. This information is
necessary for developing device
driver blocks for a target.

1-6

Installing Real-Time Workshop Embedded Coder

Installing Real-Time Workshop Embedded Coder
Your platform-specific MATLAB installation documentation provides all of the
information you need to install Real-Time Workshop Embedded Coder.

Prior to installing Real-Time Workshop Embedded Coder, you must obtain
a License File or Personal License Password (PLP) from The MathWorks.
The License File or PLP identifies the products you are permitted to install
and use.

If you customize your installation, the installer displays a dialog box that lets
you select the MATLAB products to install. You can select and install only
products for which you are licensed.

Real-Time Workshop Embedded Coder has product prerequisites, described in
the following table, that must be met for proper installation and execution.

Licensed Product
Prerequisite
Products Additional Information

Simulink MATLAB 7
(Release 14)

—

Real-Time Workshop Simulink 6
(Release 14)

Requires Borland C, LCC,
Visual C/C++, or Watcom C
compiler to create MATLAB
MEX-files on your platform.

Real-Time Workshop
Embedded Coder

Real-Time
Workshop 6
(Release 14)

—

If you experience installation difficulties and have Web access, use the
resources available on the Mathworks Web site Installation and Licensing
page at http://www.mathworks.com/support/install.html.

1-7

http://www.mathworks.com/support/install.html

1 Getting Started

Real-Time Workshop Embedded Coder Demos
The Real-Time Workshop demo suite contains many demos that can help
you become familiar with features of Real-Time Workshop Embedded Coder
and to inspect generated code. These demos illustrate features specific to
Real-Time Workshop Embedded Coder and also general Real-Time Workshop
features as used with Embedded Coder.

If you are reading this document online in the MATLAB Help browser, you
can open the demo suite by clicking on this link: rtwdemos

Alternatively, you can access the demo suite by typing the name of the demo
library at the MATLAB command prompt:

rtwdemos

Most of the demos provide a button titled Generate Code Using Real-Time
Workshop Embedded Coder. When you click this button, the demo
auto-configures itself for code generation using the ERT target, and then
initiates the code generation process. If your installation is licensed for
Real-Time Workshop Embedded Coder, use this button.

If your installation is not licensed for Real-Time Workshop Embedded
Coder, you can run most of the demos by clicking on the Generate Code
Using Real-Time Workshop button. When you click this button, the demo
auto-configures itself for code generation using the GRT target, and then
initiates the code generation process. Note that the GRT target provides a
subset of the capabilities of the ERT target.

1-8

2

Data Structures and
Program Execution

Data Structures and Code Modules
(p. 2-2)

Main data structures, code modules,
and header files of Real-Time
Workshop Embedded Coder.

Program Execution (p. 2-10) Overview of Real-Time Workshop
Embedded Coder generated
programs.

Stand-Alone Program Execution
(p. 2-11)

Execution and task management in
stand-alone (bare board) generated
programs.

VxWorks Example Main Program
Execution (p. 2-20)

Data Exchange Execution and task
management of example programs
deployed under VxWorks real-time
operating system.

Model Entry Points (p. 2-22) Description of model entry-point
functions and how to call them.

The Static Main Program Module
(p. 2-26)

Description of the alternative static
(non-generated) main program
module.

Rate Grouping Compliance and
Compatibility Issues (p. 2-31)

How to take advantage of the
efficiency of rate grouping by
updating your multi-rate inlined
S-functions and main program
module for compatibility.

2 Data Structures and Program Execution

Data Structures and Code Modules

Real-Time Model Data Structure
Real-Time Workshop Embedded Coder encapsulates information about the
root model in the real-time model data structure, also referred to as rtModel.

To reduce memory requirements, rtModel contains only information required
by your model. For example, the fields related to data logging are generated
only if the model has the MAT-file logging code generation option enabled.
rtModel may also contain model-specific information related to timing,
solvers, and model data such as inputs, outputs, states, and parameters.

By default, rtModel contains an error status field that your code can monitor
or set. If you do not need to log or monitor error status in your application,
select the Suppress error status in real-time model data structure
option. This further reduces memory usage. Selecting this option may also
cause rtModel to disappear completely from the generated code.

The symbol definitions for rtModel in generated code are as follows:

• Structure definition (in model.h):

struct _RT_MODEL_model_Tag {
...
};

• Forward declaration typedef (in model_types.h):

typedef struct _RT_MODEL_model_Tag RT_MODEL_model;

• Variable and pointer declarations (in model.c or .cpp):

RT_MODEL_model model_M_;
RT_MODEL_model *model_M = &model_M_;

• Variable export declaration (in model.h):

extern RT_MODEL_model *model_M;

2-2

Data Structures and Code Modules

rtModel Accessor Macros
To enable you to interface your code to rtModel, Real-Time Workshop
Embedded Coder provides accessor macros. Your code can use the macros,
and access the fields they reference, with model.h.

If you are interfacing your code to a single model, refer to its rtModel
generically as model_M, and use the macros to access its rtModel as in the
following code fragment.

#include "model.h"
const char *errStatus = rtmGetErrorStatus(model_M);

To interface your code to the rtModel structures of more than one model,
simply include the model.h headers for each model, as in the following code
fragment.

#include "modelA.h" /* Make model A entry points visible */
#include "modelB.h" /* Make model B entry points visible */

void myHandWrittenFunction(void)
{

const char_T *errStatus;

modelA_initialize(1); /* Call model A initializer */
modelB_initialize(1); /* Call model B initializer */
/* Refer to model A's rtModel */
errStatus = rtmGetErrorStatus(modelA_M);
/* Refer to model B's rtModel */
errStatus = rtmGetErrorStatus(modelB_M);

}

To view macros related to rtModel that are applicable to your specific
model, generate code with a code generation report (see “Generating a
Code Generation Report” on page 3-61). Then, view model.h by clicking the
hyperlink in the report.

2-3

2 Data Structures and Program Execution

Code Modules
This section summarizes the code modules and header files that make up a
Real-Time Workshop Embedded Coder program, and describes where to find
them.

Note that in most cases, the easiest way to locate and examine the generated
code files is to use the Real-Time Workshop Embedded Coder code generation
report. The code generation report provides a table of hyperlinks that let you
view the generated code in the MATLAB Help browser. See “Generating a
Code Generation Report” on page 3-61 for further information.

Generated Code Modules
Real-Time Workshop Embedded Coder creates a build directory in your
working directory to store generated source code. The build directory also
contains object files, a makefile, and other files created during the code
generation process. The default name of the build directory is model_ert_rtw.

Real-Time Workshop Embedded Coder File Packaging on page 2-5
summarizes the structure of source code generated by Real-Time Workshop
Embedded Coder.

Note The file packaging of Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging employed by the GRT,
GRT malloc, and other non-embedded targets. See the Real-Time Workshop
documentation for further information.

2-4

Data Structures and Code Modules

Real-Time Workshop Embedded Coder File Packaging

File Description

model.c or .cpp Contains entry points for all code implementing the model
algorithm (for example, model_step, model_initialize,
model_terminate, model_SetEventsForThisBaseStep).

model_private.h Contains local macros and local data that are required by the model
and subsystems. This file is included by the generated source files
in the model. You do not need to include model_private.h when
interfacing hand-written code to a model.

model.h Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model_M) with accessor macros.
model.h is included by subsystem .c or .cpp files in the model.

If you are interfacing your hand-written code to generated code for
one or more models, you should include model.h for each model
to which you want to interface.

model_data.c or .cpp
(conditional)

model_data.c or .cpp is conditionally generated. It contains the
declarations for the parameters data structure, the constant block
I/O data structure, and any zero representations used for the
model’s structure data types. If these data structures and zero
representations are not used in the model, model_data.c or .cpp is
not generated. Note that these structures and zero representations
are declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data
structure and the parameters data structure. These may be needed
by function declarations of reusable functions. Also provides type
definitions for user-defined types used by the model.

rtwtypes.h Defines data types, structures and macros required by Real-Time
Workshop Embedded Coder generated code. Most other generated
code modules require these definitions.

ert_main.c or .cpp
(optional)

This file is generated only if the Generate an example main
program option is on. (This option is on by default.) See
“Generating the Main Program” on page 2-8.

2-5

2 Data Structures and Program Execution

Real-Time Workshop Embedded Coder File Packaging (Continued)

File Description

autobuild.h
(optional)

This file is generated only if the Generate code only and
Generate an example main program options are off. (See
“Generating the Main Program” on page 2-8.)

autobuild.h contains #include directives required by the static
version of the ert_main.c main program module. Since the static
ert_main.c is not created at code generation time, it includes
autobuild.h to access model-specific data structures and entry
points.

See “The Static Main Program Module” on page 2-26 for further
information.

model_capi.c or .cpp
model_capi.h
(optional)

Provides data structures that enable a running program to access
model parameters and signals without use of external mode. To
learn how to generate and use the model_capi.c or .cpp and .h
files, see the “Data Exchange APIs” chapter in the Real-Time
Workshop documentation.

You can also customize the generated set of files in several ways:

• Nonvirtual subsystem code generation: You can instruct Real-Time
Workshop to generate separate functions, within separate code files, for
any nonvirtual subsystems. You can control the names of the functions
and of the code files. See “Nonvirtual Subsystem Code Generation” in the
Real-Time Workshop documentation for further information.

• Custom storage classes: You can use custom storage classes to partition
generated data structures into different files based on file names you
specify. See Chapter 4, “Custom Storage Classes” for further information.

• Module Packaging Features (MPF) also lets you direct the generated code
into a required set of .c or .cpp and .h files, and control the internal
organization of the generated files. See the Module Packaging Features
document for details.

2-6

Data Structures and Code Modules

User-Written Code Modules
Code that you write to interface with generated model code usually includes a
customized main module (based on a main program provided by Real-Time
Workshop Embedded Coder), and may also include interrupt handlers, device
driver blocks and other S-functions, and other supervisory or supporting code.

You should establish a working directory for your own code modules. Your
working directory should be on the MATLAB path. Minimally, you must also
modify the ERT template makefile and system target file so that the build
process can find your source and object files. More extensive modifications to
the ERT target files are needed if you want to generate code for a particular
microprocessor or development board, and to deploy the code on target
hardware with a cross-development system.

See the Developing Embedded Targets document for information on how to
customize the ERT target for your production requirements.

2-7

2 Data Structures and Program Execution

Generating the Main Program
The Generate an example main program option controls whether or not
ert_main.c or ert_main.cpp is generated. This option is located in the
Templates pane of the Configuration Parameters dialog, as shown in this
figure.

Options for Generating a Main Program

By default, Generate an example main program is on. When Generate
an example main program is selected, the Target operating system
pop-up menu is enabled. This menu lets you choose the following options:

• BareBoardExample: Generate a bare-board main program designed to run
under control of a real-time clock, without a real-time operating system.

• VxWorksExample: Generate a fully commented example showing how to
deploy the code under the VxWorks real-time operating system.

2-8

Data Structures and Code Modules

Regardless of which Target operating system you select, ert_main.c or
.cpp includes

• The main() function for the generated program

• Task scheduling code that determines how and when block computations
execute on each time step of the model

The operation of the main program and the scheduling algorithm employed
depend primarily upon whether your model is single-rate or multi-rate, and
also upon your model’s solver mode (SingleTasking vs. MultiTasking).
These are described in detail in “Program Execution” on page 2-10.

If you turn the Generate an example main program option off, Real-Time
Workshop Embedded Coder provides a static version of the file ert_main.c
as a basis for your custom modifications (see “The Static Main Program
Module” on page 2-26).

Note Once you have generated and customized the main program, you should
take care to turn Generate an example main program off to prevent
regenerating the main module and overwriting your customized version.

You can use a custom file processing (CFP) template file to override the normal
main program generation, and generate a main program module customized
for your target environment. To learn how to do this, see “Customizing Main
Program Module Generation” on page 6-46.

2-9

2 Data Structures and Program Execution

Program Execution
The following sections describe how programs generated by Real-Time
Workshop Embedded Coder execute, from the top level down to timer
interrupt level:

• “Stand-Alone Program Execution” on page 2-11 describes the operation of
self-sufficient example programs that do not require an external real-time
executive or operating system.

• “VxWorks Example Main Program Execution” on page 2-20 describes
the operation of example programs designed for deployment under the
VxWorks real-time operating system.

• “Model Entry Points” on page 2-22 describes the model functions that are
generated for both stand-alone and VxWorks example programs.

2-10

Stand-Alone Program Execution

Stand-Alone Program Execution
By default, Real-Time Workshop Embedded Coder generates stand-alone
programs that do not require an external real-time executive or operating
system. A stand-alone program requires some minimal modification to be
adapted to the target hardware; these modifications are described in the
following sections. The stand-alone program architecture supports execution
of models with either single or multiple sample rates.

To generate a stand-alone program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog (or Model Explorer), select the Generate an example main
program option (this option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select BareBoardExample
from this menu (this option is the default selection).

The core of a stand-alone program is the main loop. On each iteration, the
main loop executes a background or null task and checks for a termination
condition.

The main loop is periodically interrupted by a timer. The Real-Time Workshop
function rt_OneStep is either installed as a timer interrupt service routine
(ISR), or called from a timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model_step
function(s). The operation of rt_OneStep differs depending on whether
the generating model is single-rate or multi-rate. In a single-rate model,
rt_OneStep simply calls the model_step function. In a multi-rate model,
rt_OneStep prioritizes and schedules execution of blocks according to the
rates at which they run.

Real-Time Workshop Embedded Coder generates significantly different code
for multi-rate models depending on the following factors:

• Whether the model executes in singletasking or multitasking mode.

2-11

2 Data Structures and Program Execution

• Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in
some cases affect the API for the model entry point functions. The following
sections discuss these variants.

Main Program

Overview of Operation
The following pseudocode shows the execution of a Real-Time Workshop
Embedded Coder main program.

main()
{

Initialization (including installation of rt_OneStep as an
interrupt service routine for a real-time clock)

Initialize and start timer hardware
Enable interupts
While(not Error) and (time < final time)

Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

}

The pseudocode is a design for a harness program to drive your model. The
ert_main.c or .cpp program only partially implements this design. You must
modify it according to your specifications.

Guidelines for Modifying the Main Program
This section describes the minimal modifications you should make in your
production version of ert_main.c or .cpp to implement your harness program.

• After calling model_initialize:

- Initialize target-specific data structures and hardware such as ADCs
or DACs.

2-12

Stand-Alone Program Execution

- Install rt_OneStep as a timer ISR.

- Initialize timer hardware.

- Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has
been called. Servicing of timer interrupts should not begin until
model_initialize has been called.

• Optionally, insert background task calls in the main loop.

• On termination of main loop (if applicable):

- Disable timer interrupts.

- Perform target-specific cleanup such as zeroing DACs.

- Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions such as
timer interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus
to detect and signal errors.

rt_OneStep

Overview of Operation
The operation of rt_OneStep depends upon

• Whether your model is single-rate or multi-rate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are
the same. Any model in which the sample times and step size do not meet
these conditions is termed multi-rate.

• Your model’s solver mode (SingleTasking vs. MultiTasking)

Permitted Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-14 summarizes the permitted solver modes for single-rate
and multi-rate models. Note that for a single-rate model, only SingleTasking
solver mode is allowed.

2-13

2 Data Structures and Program Execution

Permitted Solver Modes for Real-Time Workshop Embedded Coder
Targeted Models

Mode Single-Rate Multi-Rate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

The generated code for rt_OneStep (and associated timing data structures
and support functions) is tailored to the number of rates in the model and to
the solver mode. The following sections discuss each possible case.

Single-Rate Singletasking Operation
The only valid solver mode for a single-rate model is SingleTasking. Such
models run in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{

Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
Model_Step() -- Time step combines output,logging,update

}

For the single-rate case, the generated model_step function is

void model_step(void)

Single-rate rt_OneStep is designed to execute model_step within a single
clock period. To enforce this timing constraint, rt_OneStep maintains and
checks a timer overrun flag. On entry, timer interrupts are disabled until the
overrun flag and other error conditions have been checked. If the overrun flag
is clear, rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

2-14

Stand-Alone Program Execution

The overrun flag is cleared only upon successful return from model_step.
Therefore, if rt_OneStep is reinterrupted before completing model_step, the
reinterruption is detected through the overrun flag.

Reinterruption of rt_OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

Multi-Rate Multitasking Operation
In a multi-rate multitasking system, Real-Time Workshop Embedded Coder
uses a prioritized, preemptive multitasking scheme to execute the different
sample rates in your model.

The following pseudocode shows the design of rt_OneStep in a multi-rate
multitasking program.

rt_OneStep()
{

Check for base-rate interrupt overrun
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

Model_Step0() -- run base-rate time step code

For N=1:NumTasks-1 -- iterate over sub-rate tasks
If (sub-rate task N is scheduled)
Check for sub-rate interrupt overrun

Model_StepN() -- run sub-rate time step code
EndIf

EndFor
}

2-15

2 Data Structures and Program Execution

Task Identifiers. The execution of blocks having different sample rates is
broken into tasks. Each block that executes at a given sample rate is assigned
a task identifier (tid), which associates it with a task that executes at that
rate. Where there are NumTasks tasks in the system, the range of task
identifiers is 0..NumTasks-1.

Prioritization of Base-Rate and Sub-Rate Tasks. Tasks are prioritized,
in descending order, by rate. The base-rate task is the task that runs at the
fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest
priority, and so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at submultiples of the base rate, are called sub-rate
tasks.

Rate Grouping and Rate-Specific model_step Functions. In a single-rate
model, all block output computations are performed within a single function,
model_step. For multi-rate, multitasking models, Real-Time Workshop
Embedded Coder uses a different strategy (whenever possible). This strategy
is called rate grouping. Rate grouping generates separate model_step
functions for the base rate task and each sub-rate task in the model. The
function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model_step0 (void);
void my_model_step1 (void);
void my_model_step2 (void);

Each model_stepN function executes all blocks sharing tid N; in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

Scheduling model_stepN Execution. On each clock tick, rt_OneStep and
model_step0 maintain scheduling counters and event flags for each sub-rate
task. The counters are implemented in the Timing.TaskCounters.TIDn fields
of rtModel. The event flags are implemented as arrays, indexed on tid.

2-16

Stand-Alone Program Execution

The scheduling counters are maintained by the rate_monotonic_scheduler
function, which is called by model_step0 (that is, in the base-rate task). The
counters are, in effect, clock rate dividers that count up the sample period
associated with each sub-rate task.

The event flags indicate whether or not a given task is scheduled
for execution. rt_OneStep maintains the event flags with the
model_SetEventsForThisBaseStep function. When a counter indicates that
a task’s sample period has elapsed, model_SetEventsForThisBaseStep sets
the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and
steps the base-rate task (rt_OneStep always calls model_step0 because the
base-rate task must execute on every clock step). Then, rt_OneStep iterates
over the scheduling flags in tid order, unconditionally calling model_stepN for
any task whose flag is set. This ensures that tasks are executed in order of
priority.

Preemption. Note that the design of rt_OneStep assumes that interrupts are
disabled before rt_OneStep is called. rt_OneStep should be noninterruptible
until the base-rate interrupt overflow flag has been checked (see pseudocode
above).

The event flag array and loop variables used by rt_OneStep are stored as local
(stack) variables. This ensures that rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks preempt lower priority tasks. Upon return
from interrupt, lower priority tasks resume in the previously scheduled order.

Overrun Detection. Multi-rate rt_OneStep also maintains an array of timer
overrun flags. rt_OneStep detects timer overrun, per task, by the same logic
as single-rate rt_OneStep.

Note If you have developed multi-rate S-functions, or if you use a
customized static main program module, see “Rate Grouping Compliance and
Compatibility Issues” on page 2-31 for information about how to adapt your
code for rate grouping compatibility. This adaptation lets your multi-rate,
multitasking models generate more efficient code.

2-17

2 Data Structures and Program Execution

Multi-Rate Singletasking Operation
In a multi-rate singletasking program, by definition, all sample times in the
model must be an integer multiple of the model’s fixed-step size.

In a multi-rate singletasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is
a simplified version of multi-rate multitasking operation. Rate grouping is
not used. The only task is the base-rate task. Therefore, only one model_step
function is generated:

void model_step(int_T tid)

On each clock tick, rt_OneStep checks the overrun flag and calls model_step,
passing in tid 0. The scheduling function for a multi-rate singletasking
program is rate_scheduler (rather than rate_monotonic_scheduler). The
scheduler maintains scheduling counters on each clock tick. There is one
counter for each sample rate in the model. The counters are implemented in
an array (indexed on tid) within the Timing structure within rtModel.

The counters are, in effect, clock rate dividers that count up the sample period
associated with each sub-rate task. When a counter indicates that a sample
period for a given rate has elapsed, rate_scheduler clears the counter. This
condition indicates that all blocks running at that rate should execute on the
next call to model_step. model_step is responsible for checking the counters.

Guidelines for Modifying rt_OneStep
rt_OneStep does not require extensive modification. The only required
modification is to re-enable interrupts after the overrun flag(s) and error
conditions have been checked. If applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.

• Set model inputs associated with the base rate before calling model_step0.

• Get model outputs associated with the base rate after calling model_step0.

• In a multi-rate, multitasking model, set model inputs associated with
sub-rates before calling model_stepN in the sub-rate loop.

• In a multi-rate, multitasking model, get model outputs associated with
sub-rates after calling model_stepN in the sub-rate loop.

2-18

Stand-Alone Program Execution

Comments in rt_OneStep indicate the appropriate place to add your code.

In multi-rate rt_OneStep, you can improve performance by unrolling for
and while loops.

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtModel) and
logic are critical to correct operation of any Real-Time Workshop Embedded
Coder program.

2-19

2 Data Structures and Program Execution

VxWorks Example Main Program Execution

Overview
The Real-Time Workshop Embedded Coder VxWorks example main
program is provided as a template for the deployment of generated code
in a real-time operating system (RTOS) environment. You should read
the preceding sections of this chapter as a prerequisite to working with
the VxWorks example main program. An understanding of the Real-Time
Workshop Embedded Coder scheduling and tasking concepts and algorithms,
described in “Stand-Alone Program Execution” on page 2-11, is essential to
understanding how generated code is adapted to an RTOS.

In addition, an understanding of how tasks are managed under VxWorks is
required. See your VxWorks documentation.

To generate a VxWorks example program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog (or Model Explorer), select the Generate an example main
program option (this option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select VxWorksExample from
this menu.

Some modifications to the generated code are required; comments in the
generated code identify the required modifications.

Task Management
In a VxWorks example program, the main program and the base rate and
sub-rate tasks (if any) run as proritized tasks under VxWorks. The logic of a
VxWorks example program parallels that of a stand-alone program; the main
difference lies in the fact that base rate and sub-rate tasks are activated by
clock semaphores managed by the operating system, rather than directly
by timer interrupts.

2-20

VxWorks Example Main Program Execution

Your application code must spawn model_main() as an independent VxWorks
task. The task priority you specify is passed in to model_main().

As with a stand-alone program, the VxWorks example program architecture
is tailored to the number of rates in the model and to the solver mode (see
Permitted Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-14). The following sections discuss each possible case.

Single-Rate Singletasking Operation
In a single-rate, singletasking model, model_main() spawns a base rate
task, tBaseRate. In this case tBaseRate is the functional equivalent to
rtOneStep. The base rate task is activated by a clock semaphore provided by
VxWorks, rather than by a timer interrupt. On each activation, tBaseRate
calls model_step.

Note that the clock rate granted by VxWorks may not be the same as the
rate requested by model_main.

Multi-Rate Multitasking Operation
In a multi-rate, multitasking model, model_main() spawns a base rate task
and sub-rate tasks. Task priorities are assigned by rate.

As in a stand-alone program, rate grouping code is used (where possible)
for multi-rate, multitasking models. The base rate task calls model_step0,
while the sub-rate tasks call model_stepN. The base rate task is responsible
for maintaining event flags and scheduling counters, using the same rate
monotonic scheduler algorithm as a stand-alone program.

Multi-Rate Singletasking Operation
In a multi-rate, singletasking model, model_main() spawns only a base rate
task, tBaseRate. All rates run under this task. The base rate task is activated
by a clock semaphore provided by VxWorks, rather than by a timer interrupt.
On each activation, tBaseRate calls model_step.

model_step in turn calls the rate_scheduler utility, which maintains the
scheduling counters that determine which rates should execute. model_step
is responsible for checking the counters.

2-21

2 Data Structures and Program Execution

Model Entry Points
This section discusses the entry points to the generated code.

Note that the calling interface generated for each of these functions differs
significantly depending on how you set the Generate reusable code option
(See “Interface Pane” on page 3-32).

By default, Generate reusable code is off, and the model entry point
functions access model data with statically allocated global data structures.
When Generate reusable code is on, model data structures are passed in
(by reference) as arguments to the model entry point functions. For efficiency,
only those data structures that are actually used in the model are passed in.
Therefore when Generate reusable code is on, the argument lists generated
for the entry point functions vary according to the requirements of the model.

The descriptions below document the default (Generate reusable code off)
calling interface generated for these functions.

The entry points are exported with model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your
code. If Generate reusable code is on, you must examine the generated
code to determine the calling interface required for these functions.

model_step

Default Calling Interface
The model_step function prototype is different depending upon the number of
rates in the model and the solver mode. Function Prototypes for model_step
on page 2-23 shows the model_step function prototype for each case.

2-22

Model Entry Points

Function Prototypes for model_step

Rates/Solver Mode Function Prototype Arguments

Single-rate/SingleTasking void model_step(void); N/A

Multi-rate/SingleTasking void model_step(int_T tid); tid is a task identifier.

Multi-rate/MultiTasking
(rate grouping)

void model_stepN (void);
(N is a task identifier)

N/A

Operation
model_step combines the model output and update functions into a single
routine. model_step is designed to be called at interrupt level from
rt_OneStep, which is assumed to be invoked as a timer ISR.

See “rt_OneStep” on page 2-13 for a description of how calls to model_step
are generated and scheduled for the above cases.

model_step computes the current value of all blocks. If logging is enabled,
model_step updates logging variables. If the model’s stop time is finite,
model_step signals the end of execution when the current time equals the
stop time.

In cases where a tid is passed in, the caller (rt_OneStep) assigns each task a
tid, and model_step uses the tid argument to determine which blocks have a
sample hit (and therefore should execute).

Under any of the following conditions, model_step does not check the current
time against the stop time:

• The model’s stop time is set to inf.

• Logging is disabled.

• The Terminate function required option is not selected.

Therefore, if any of these conditions are true, the program runs indefinitely.

2-23

2 Data Structures and Program Execution

model_initialize

Default Calling Interface
The model_initialize function prototype is

void model_initialize(boolean_T firstTime);

Operation
If firstTime equals 1 (TRUE), model_initialize initializes rtModel and
other data structures private to the model. If firstTime equals 0 (FALSE),
model_initialize resets the model’s states, but does not initialize other
data structures.

The generated code calls model_initialize once, passing in firstTime as
1(TRUE).

Note In a future release, Real-Time Workshop Embedded Coder will no
longer use the firstTime argument in a model’s generated model_initialize
function. In the current release, to suppress inclusion of the firstTime flag
in the generated function definition, you can set the model configuration
parameter IncludeERTFirstTime to off. For more information about
firstTime, IncludeERTFirstTime, and a related target configuration
parameter, ERTFirstTimeCompliant, see the Version 4.4 (R2006a) Real-Time
Workshop Embedded Coder Release Notes.

model_terminate

Default Calling Interface
The model_terminate function prototype is

void model_terminate(void);

Operation
When model_terminate is called, blocks that have a terminate function
execute their terminate code. If logging is enabled, model_terminate ends

2-24

Model Entry Points

data logging. model_terminate should only be called once. If your application
runs indefinitely, you do not need the model_terminate function.

If you do not require a terminate function, see “Interface Pane” on page 3-32
for information on using the Terminate function required option. Note
that if Terminate function required is off, the program runs indefinitely.

model_SetEventsForThisBaseStep

Calling Interface
By default, the model_SetEventsForThisBaseStep function prototype is

void model_SetEventsForThisBaseStep(boolean_T *eventFlags)

where eventFlags is a pointer to the model’s event flags array.

If Generate reusable code is on, an additional argument is included:

void model_SetEventsForThisBaseStep(boolean_T *eventFlags,
RT_MODEL_model *model_M);

where model_M is a pointer to the real-time model object.

Operation
The model_SetEventsForThisBaseStep function is a utility function that is
generated and called only for multi-rate, multitasking programs.

model_SetEventsForThisBaseStep maintains the event flags, which
determine which sub-rate tasks need to run on a given base rate time step.
model_SetEventsForThisBaseStep must be called prior to calling the
model_step function. See “Multi-Rate Multitasking Operation” on page 2-21
for further information.

Note The macro MODEL_SETEVENTS, defined in the static ert_main.c module,
provides a way to call model_SetEventsForThisBaseStep from a static main
program.

2-25

2 Data Structures and Program Execution

The Static Main Program Module
In most cases, the easiest strategy for deploying your generated code is to
use the Generate an example main program option to generate the
ert_main.c or .cpp module (see “Generating the Main Program” on page 2-8).

However, if you turn the Generate an example main program option off,
you can use the module matlabroot/rtw/c/ert/ert_main.c as a template
example for developing your embedded applications. The module is not part of
the generated code; it is provided as a basis for your custom modifications,
and for use in simulation. If your existing applications, developed prior to this
release, depend upon a static ert_main.c, you may need to continue using
this module.

When developing applications using a static ert_main.c, you should copy this
module to your working directory and rename it to model_ert_main.c before
making modifications. Also, you must modify the template makefile such that
the build process creates model_ert_main.obj (on Unix, model_ert_main.o)
in the build directory.

The static ert_main.c contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model_step to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only.
You must modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function
are essentially the same in the static version of ert_main.c as they are in the
autogenerated version described in “Stand-Alone Program Execution” on page
2-11. For multi-rate, multitasking models, however, the static and generated
code is slightly different. The next section describes this case.

2-26

The Static Main Program Module

Rate Grouping and the Static Main Program
Targets based on the ERT target sometimes use a static ert_main module and
disallow use of the Generate an example main program option. This
may be necessary because target-specific modifications have been added to
the static ert_main.c, and these modifications would not be preserved if
the main program were regenerated.

Your ert_main module may or may not use rate grouping compatible
model_stepN functions. If your ert_main module is based on the static
ert_main.c module, it does not use rate-specific model_stepN function calls.
The static ert_main.c module uses the old-style model_step function, passing
in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off,
the ERT target generates a model_step “wrapper” for multi-rate, multitasking
models. The purpose of the wrapper is to interface the rate-specific
model_stepN functions to the old-style call. The wrapper code dispatches to
the appropriate model_stepN call with a switch statement, as in the following
example:

void mymodel_step(int_T tid) /* Sample time: */
{

switch(tid) {
case 0 :
mymodel_step0();
break;

case 1 :
mymodel_step1();
break;

case 2 :
mymodel_step2();
break;

default :
break;

}
}

2-27

2 Data Structures and Program Execution

The following pseudocode showshow rt_OneStep calls model_step from the
static main program in a multi-rate, multitasking model.

rt_OneStep()
{

Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For N=1:NumTasks-1 -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task N is scheduled)

ModelStep(tid=N) --sub-rate time step
EndIf

EndFor
}

You can use the TLC variable RateBasedStepFcn to specify that only the
rate-based step functions are generated, without the wrapper function. If your
target calls the rate grouping compatible model_stepN function directly, set
RateBasedStepFcn to 1. In this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the %include "codegenentry.tlc"
statement in your system target file. Alternatively, you can set
RateBasedStepFcn in your target_settings.tlc file.

Modifying the Static Main Program
As in the generated ert_main.c, a few modifications to the main loop and
rt_OneStep are necessary. See “Guidelines for Modifying the Main Program”
on page 2-12 and “Guidelines for Modifying rt_OneStep” on page 2-18.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

2-28

The Static Main Program Module

Other modifications you may need to make are

• If your model has multiple rates, the generated code does not operate
correctly unless:

- The multi-rate scheduling code is removed. The relevant code is
tagged with the keyword REMOVE in comments (see also the Version 3.0
comments in ert_main.c).

- Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the
event flags instead of accessing the flags directly. The relevant code is
tagged with the keyword REPLACE in comments.

• Remove old #include ertformat.h directives. ertformat.h will be
obsoleted in a future release. The following macros, formerly defined in
ertformat.h, are now defined within ert_main.c:

EXPAND_CONCAT
CONCAT
MODEL_INITIALIZE
MODEL_STEP
MODEL_TERMINATE
MODEL_SETEVENTS
RT_OBJ

See also the comments in ertformat.h.

• If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

• When the Generate code only and Generate an example main
program options are off, Real-Time Workshop Embedded Coder generates
the file autobuild.h to provide an interface between the main module and
generated model code. If you create your own static main program module,
you would normally include autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:

%assign AutoBuildProcedure = 0

2-29

2 Data Structures and Program Execution

• If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

- The #if TERMFCN... compile-time error check

- The call to MODEL_TERMINATE

• If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

- Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

- Remove the #if ONESTEPFCN... error check.

• The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program.
The following error check raises a compile-time error if Generate
Reusable Code is used illegally.

#if MULTI_INSTANCE_CODE==1

• The static ert_main.c module does not support the External mode option.
Use this option only if you are generating a main program. The following
error check raises a compile-time error if External mode is used illegally.

#ifdef EXT_MODE

2-30

Rate Grouping Compliance and Compatibility Issues

Rate Grouping Compliance and Compatibility Issues

Main Program Compatibility
When the Generate an example main program option is off, Real-Time
Workshop Embedded Coder generates slightly different rate grouping code, for
compatibility with the older static ert_main.c module. See “Rate Grouping
and the Static Main Program” on page 2-27 for details.

Making Your S-Functions Rate Grouping Compliant
All built-in Simulink blocks, as well as all blocks in the Signal Processing
Blockset, are compliant with the requirements for generating rate grouping
code. However, user-written multi-rate inlined S-functions may not be rate
grouping compliant. Non-compliant blocks generate less efficient code, but
are otherwise compatible with rate grouping. To take full advantage of the
efficiency of rate grouping, your multi-rate inlined S-functions must be
upgraded to be fully rate grouping compliant. You should upgrade your TLC
S-function implementations, as described in this section.

Use of non-compliant multirate blocks to generate rate-grouping code
generates dead code. This can cause two problems:

• Reduced code efficiency.

• Warning messages issued at compile time. Such warnings are caused when
dead code references temporary variables before initialization. Since the
dead code never runs, this problem does not affect the run-time behavior of
the generated code.

To make your S-functions rate grouping compliant, you can use the following
TLC functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)
UpdateForTID(block, system, tid)

2-31

2 Data Structures and Program Execution

The code listings below illustrate generation of output computations without
rate grouping (Listing 1) and with rate grouping (Listing 2). Note the
following:

• The tid argument is a task identifier (0..NumTasks-1).

• Only code guarded by the tid passed in to OutputsForTID is generated.
The if (%<LibIsSFcnSampleHit(portName)>) test is not used in
OutputsForTID.

• When generating rate grouping code, OutputsForTID and/or UpdateForTID
is called during code generation. When generating non-rate-grouping code,
Outputs and/or Update is called.

• In rate grouping compliant code, the top-level Outputs and/or Update
functions call OutputsForTID and/or UpdateForTID functions for each rate
(tid) involved in the block. The code returned by OutputsForTID and/or
UpdateForTID must be guarded by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)

as in Listing 2.

Listing 1: Outputs Code Generation Without Rate
Grouping

%% multirate_blk.tlc

%implements "multirate_blk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% Each ports has a different rate.

%%

%% Note, the usage of the enable should really be protected such that

%% Neach task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

2-32

Rate Grouping Compliance and Compatibility Issues

%%

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(0, "", "", 0)

{

int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()> && ...

%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%else

if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%endif

if (*enabled) {

%assign signal = LibBlockInputSignal(1, "", "", 0)

if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

}

}

%endfunction

%% [EOF] sfun_multirate.tlc

2-33

2 Data Structures and Program Execution

Listing 2: Outputs Code Generation With Rate
Grouping

%% example_multirateblk.tlc

%implements "example_multirateblk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (the input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% All ports have different sample rate.

%%

%% Note: the usage of the enable should really be protected such that

%% each task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

%%

%function Outputs(block, system) Output

%assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]

%assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]

%foreach i = 3

%assign portName = portIdxName[i]

%assign tid = portTID[i]

if (%<LibIsSFcnSampleHit(portName)>) {

%<OutputsForTID(block,system,tid)>

}

%endforeach

%endfunction

%function OutputsForTID(block, system, tid) Output

/* %<Type> Block: %<Name> */

2-34

Rate Grouping Compliance and Compatibility Issues

%assign enable = LibBlockInputSignal(0, "", "", 0)

{

%assign enabled = LibBlockIWork(0, "", "", 0)

%assign signal = LibBlockInputSignal(1, "", "", 0)

%switch(tid)

%case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()> {

%<enabled> = (%<enable> > 0.0);

}

%else

%<enabled> = (%<enable> > 0.0);

%endif

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

%break

%default

%% error it out

%endswitch

%endfunction

%% [EOF] sfun_multirate.tlc

2-35

2 Data Structures and Program Execution

2-36

3

Code Generation Options
and Optimizations

Accessing the ERT Target Options
(p. 3-3)

GUIs for viewing and configuring
ERT target options.

Support for Continuous Time Blocks
and Solvers (p. 3-5)

Summarizes ERT options in relation
to trade-offs for code efficiency,
traceability, and safety.

Mapping Application Requirements
to Configuration Options (p. 3-6)

Discusses the process of mapping
application requirements,
particularly with respect to
traceability, efficiency, and safety,
map to code generation options in a
model configuration set.

Guide to the ERT Target Options
(p. 3-13)

Describes code generation options
that are specific to the ERT target.

Tips for Optimizing the Generated
Code (p. 3-52)

Utilities and code generation options
you can use to automatically
configure models, improve
performance and reduce code
size.

3 Code Generation Options and Optimizations

Generating a Code Generation
Report (p. 3-61)

Describes how to generate a report
including information on the
generated code and suggestions
for optimization. You can view the
report in any HTML browser. The
report includes hyperlinks from the
generated code to the source blocks
in your model.

Automatic S-Function Wrapper
Generation (p. 3-64)

How to integrate your Real-Time
Workshop Embedded Coder code into
a model by generating S-function
wrappers.

Exporting Function-Call Subsystems
(p. 3-68)

Describes code export capabilities for
function-call subsystems.

Nonvirtual Subsystem Modular
Function Code Generation (p. 3-78)

How to generate atomic subsystem
function code that separates the
subsystem’s internal data from the
data of its parent Simulink model.

3-2

Accessing the ERT Target Options

Accessing the ERT Target Options
This chapter describes the Embedded Real-Time (ERT) target code generation
options, and how to view and configure them. The discussion also includes
other options that are not specific to the ERT target, but which affect ERT
code generation.

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices.
A model can contain multiple configuration sets, but only one configuration
set is active at any time. A configuration set includes code generation options
that affect Real-Time Workshop in general, and options that are specific to a
given target, such as the ERT target.

Configuration sets can be particularly useful in embedded systems
development. By defining multiple configuration sets in a model, you
can easily retarget code generation from that model. For example, one
configuration set might specify the default ERT target with external mode
support enabled for rapid prototyping, while another configuration set might
specify the Embedded Target for Motorola MPC555 to generate production
code for deployment of the application. Activation of either configuration set
fully reconfigures the model for the appropriate type of code generation.

Before you work with the ERT target options, you should become familiar with

• Configuration sets and how to view and edit them in the Configuration
Parameters dialog or Model Explorer. The Using Simulink document
contains detailed information on these topics.

• The general Real-Time Workshop code generation options and the use of
the System Target File Browser. The Real-Time Workshop documentation
contains detailed information on these topics.

3-3

3 Code Generation Options and Optimizations

Viewing ERT Target Options in the Configuration
Parameters Dialog or Model Explorer
The Configuration Parameters dialog and Model Explorer provide the quickest
routes to a model’s active configuration set. Illustrations throughout this
chapter show the Configuration Parameters dialog view of model parameters
(unless otherwise noted).

“Guide to the ERT Target Options” on page 3-13 discusses each category of
ERT target options displayed in the panes of the Configuration Parameters
dialog and Model Explorer.

3-4

Support for Continuous Time Blocks and Solvers

Support for Continuous Time Blocks and Solvers

Continuous Block Support
The ERT target supports code generation for continuous time blocks. If the
Support continuous time option is selected, you can use any such blocks
in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Fixed-Point
block libraries, including whether or not they are recommended for use
in production code generation. To view this table, execute the following
command at the MATLAB command line:

showblockdatatypetable

Then, refer to the “Recommended for Production Code?” column of the table.

Continuous Solver Support
The ERT target supports continuous solvers. In the Solver options dialog,
you can select any available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in the Developing Embedded Targets
document.

3-5

3 Code Generation Options and Optimizations

Mapping Application Requirements to Configuration
Options

The first step to applying Real-Time Workshop Embedded Coder to the
application development process is to consider how your application
requirements, particularly with respect to traceability, efficiency, and safety,
map to code generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Real-Time Workshop panes of the Simulink Configuration Parameters
dialog or Model Explorer affect the behavior of a model in simulation and the
code generated for the model.

Consider questions such as the following:

• What settings might help you debug your application?

• What is the highest priority for your application — debugging, traceability,
efficiency, extra safety precaution, or some other criteria?

• What is the second highest priority?

• Can the priority at the start of the project differ from the priority required
for the end result? What trade-offs can be made?

Once you have answered these questions, review Mapping of Application
Requirements to Configuration Parameters on page 3-7. This table maps
requirements of traceability, efficiency, and safety to configuration options
that are available for the Embedded Real-Time (ERT) target.

The default settings that appear in the table are default factory settings.

3-6

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Optimization

Block reduction
optimization

No impact Clear Set No impact Set

Implement logic
signals as boolean
data (vs. double)

No impact No impact Set No impact Set

Inline parameters Set Set Set No impact Clear

Conditional input
branch execution

No impact Set Set No impact Set

Signal storage
reuse

Clear Clear Set No impact Set

Application
lifespan (days)

No impact No impact Set to
correct
value

No impact 1

Enable local block
outputs

Clear No impact Set No impact Set

Ignore integer
downcasts in fold
expressions

Clear No impact Set Clear Clear

Eliminate
superfluous
temporary
variables
(Expression
folding)

Clear Clear Set No impact Set

Loop unrolling
threshold

No impact No impact >0 No impact 5

Reuse block
outputs

Clear Clear Set No impact Set

3-7

3 Code Generation Options and Optimizations

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Inline invariant
signals

Clear Clear Set No impact Set

Remove root
level I/O zero
initialization

No impact No impact Set Clear Clear

Remove internal
state zero
initialization

No impact No impact Set Clear Clear

Use memset to
initialize floats and
doubles to 0.0

No impact No impact Set Clear Clear

Optimize
initialization code
for model reference

No impact No impact Set Clear Set

Remove code that
protects against
division arithmetic
exceptions
(fixed-point)

No impact No impact Set Clear Clear

Hardware Implementation

Number of bits No impact No impact Set No impact 8, 16, 32,
32

Signed integer
division rounds to

Undefined Zero or Floor Zero Floor Undefined

Real-Time Workshop

Generate HTML
report

Set Set No
impact

No impact Clear

Include hyperlinks
to model

Set Set No
impact

No impact Clear

3-8

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Launch report
automatically

Set Set No
impact

No impact Clear

Ignore custom
storage classes

No impact No impact No
impact

No impact Clear

Real-Time Workshop: Comments

Include comments Set Set No
impact

No impact Set

Simulink block
comments

Set Set No
impact

No impact Set

Show eliminated
statements

No impact Set No
impact

No impact Clear

Verbose comments
for Simulink Global
storage class

Set Set No
impact

No impact Clear

Simulink block
descriptions

Set Set No
impact

No impact Clear

Simulink data
object descriptions

Set Set No
impact

No impact Clear

Custom comments
(MPT objects only)

Set Set No
impact

No impact Clear

Stateflow object
descriptions

Set Set No
impact

No impact Clear

Requirements in
block comments

Set Set No
impact

No impact Clear

Real-Time Workshop: Symbols

Global variables No impact Set No
impact

No impact RN$M

3-9

3 Code Generation Options and Optimizations

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Global types No impact Set No
impact

No impact &NRM

Field name of
global types

No impact Set No
impact

No impact NM

Subsystem
methods

No impact Set No
impact

No impact RNMF

Local temporary
variables

No impact Set No
impact

No impact NM

Local block output
variables

No impact Set No
impact

No impact rtb_NM

Constant macros No impact Set No
impact

No impact RN$M

Minimum mangle
length

No impact 1 No
impact

No impact 1

Maximum
identifier length

Set >30 No
impact

No impact 31

Generate scalar
inlined parameters
as

No impact Macros Literals No impact Literals

#define naming No impact Force
uppercase

No
impact

No impact None

Parameter naming No impact Force
uppercase

No
impact

No impact None

Signal naming No impact Force
uppercase

No
impact

No impact None

Real-Time Workshop: Debug

Verbose builds Set No impact No
impact

Set Set

3-10

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Retain .rtw file Set Set No
impact

No impact Clear

Real-Time Workshop: Interface

Target
floating-point math
environment

No impact No impact Set No impact ANSI-C

Utility function
generation

No impact No impact Shared No impact Auto

Support
floating-point
numbers

No impact No impact Clear for
integer
only

No impact Set

Support complex
numbers

No impact No impact Clear for
real only

No impact Set

Support non-finite
numbers

No impact No impact Clear No impact Set

Support absolute
time

No impact No impact Clear No impact Set

Support
continuous time

No impact No impact Clear No impact Clear

Support
non-inlined
S-functions

No impact No impact Clear No impact Clear

Terminate function
required

No impact No impact Clear Set Set

Generate reusable
code

No impact No impact Set for
single
instance

No impact Clear

3-11

3 Code Generation Options and Optimizations

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Suppress error
status in real-time
model data
structure

Clear No impact Set Clear Clear

Single
update/output
function

Set Set Set No impact Set

GRT compatible
call interface

No impact Clear Clear No impact Clear

Create Simulink
(S-Function) block

Set No impact No
impact

No impact Clear

MAT-file logging Set No impact Clear No impact Clear

Real-Time Workshop: Data Placement

Data definition No impact Set No
impact

No impact Auto

Data declaration No impact Set No
impact

No impact Auto

Module naming No impact Set No
impact

No impact Not
specified

Signal display level No impact Set No
impact

No impact 10

#include file
delimiter

No impact Set No
impact

No impact Auto

Parameter tune
level

No impact Set No
impact

No impact 10

Source of initial
values

No impact Set No
impact

No impact Model

3-12

Guide to the ERT Target Options

Guide to the ERT Target Options
This section describes options that are specific to the ERT target, as
they appear in the Configuration Parameters dialog. (The Configuration
Parameters dialog and Model Explorer views of these options closely
correspond.)

Some panes of the Configuration Parameters dialog (for example, the
Templates and Interface panes) contain only ERT-specific options. Others
(for example, the Real-Time Workshop pane) display a combination of
general Real-Time Workshop options and ERT target options. The discussion
in this section focuses on the ERT-specific options, with references to related
options and documentation included as necessary.

In the illustrations in this section, options are shown set to their default
values (unless otherwise noted).

This section groups the ERT target options according to the Configuration
Parameters dialog pane on which they appear:

• “Real-Time Workshop Pane” on page 3-14

• “Comments Pane” on page 3-18

• “Symbols Pane” on page 3-21

• “Interface Pane” on page 3-32

• “Templates Pane” on page 3-39

• “Data Placement Pane” on page 3-41

• “Data Type Replacement Pane” on page 3-43

• “Memory Sections Pane” on page 3-45

• “Optimization Pane” on page 3-48

3-13

3 Code Generation Options and Optimizations

Real-Time Workshop Pane
The Real-Time Workshop pane contains general code generation options
that pertain to

• System target file selection

• Target language selection

• Report generation

• Options and files to be used in the build process

• The use of custom storage classes

• Whether to generate code only or complete the entire build process

Target Selection Subpane
The Browse button in the Target Selection subpane lets you select a
target with the System Target File Browser. See the Real-Time Workshop
documentation for a general discussion of target selection.

3-14

Guide to the ERT Target Options

To make it easier for you to generate code that is optimized for your target
hardware, Real-Time Workshop Embedded Coder provides three variants of
the ERT target. These are

• Optimized fixed-point ERT target: Select this target to generate code with
automatic configuration of options that are optimized for fixed-point code
generation.

• Optimized floating-point ERT target: Select this target to generate code
with automatic configuration of options that are optimized for floating-point
code generation.

• Default ERT target: Does not automatically configure any options. The
discussion throughout this chapter assumes use of the default ERT target.

These targets are based on a common system target file, ert.tlc. They are
displayed in the System Target File Browser as shown in the figure below.

The optimized ERT target variants are discussed in detail in “Generating
Efficient Code with Optimized ERT Targets” on page 6-23.

You can implement a custom auto-configuring target, using the same
mechanism used by the optimized ERT target variants. “Auto-Configuring
Models for Code Generation” on page 6-19 discusses the auto-configuration
mechanism and utilities used by the optimized ERT target variants.

3-15

3 Code Generation Options and Optimizations

Use the Language menu in the Target selection subpane to select the
target language for the code Real-Time Workshop generates. You can select C
or C++. Real-Time Workshop generates .c or .cpp files, depending on your
selection, and places the files in your build directory.

Note If you select C++, you might need to configure Real-Time Workshop
to use the appropriate compiler before you build a system. For details,
see “Choosing and Configuring a Compiler” in the Real-Time Workshop
documentation.

Documentation Subpane
Options in the Documentation subpane control generation of the extended
Real-Time Workshop Embedded Coder HTML code generation report. Options
are

• Generate HTML Report: When this option is selected, the code
generation process generates an HTML code generation report, as described
in “Generating a Code Generation Report” on page 3-61. Selecting this
option enables the two related options immediately below it.

By default, Generate HTML Report is deselected.

• Include hyperlinks to model: When you select this option, the HTML
report includes hyperlinks from the code to the generating blocks in the
model. By deselecting this option, you can speed up code generation. For
very large models (containing over 1000 blocks) generation of hyperlinks
can be time consuming.

This option is enabled and selected when Generate HTML Report is
selected.

• Launch report after code generation completes: When you select
this option, the HTML report is automatically displayed in a MATLAB
Web browser window after code generation. If you prefer not to have the
browser come to the front after code generation, deselect this option.

This option is enabled and selected when Generate HTML Report is
selected.

3-16

Guide to the ERT Target Options

Build Process Subpane
The options in the Build process subpane are described in the Real-Time
Workshop documentation.

For examples of how arguments in the Make command and TLC options
fields are passed to the build process, see:

• “Customizing the Target Build Process with the STF_make_rtw Hook File”
on page 6-8

• The “Understanding and Using the Build Process” section of the Developing
Embedded Targets document

Custom Storage Class Subpane
If you have defined data objects with custom storage classes in your model for
use with Real-Time Workshop Embedded Coder, you should make sure that
the Ignore custom storage classes option is deselected.

Chapter 4, “Custom Storage Classes” contains a detailed description of the
use of custom storage classes in code generation.

3-17

3 Code Generation Options and Optimizations

Comments Pane
The Comments pane contains options related to generation of comments in
generated code.

Overall Control Subpane
The Include comments option in the Overall control subpane enables or
disables all other options on the Comments pane.

Auto Generated Comments Subpane
The Auto generated comments subpane contains options that are common
to all targets. See the Real-Time Workshop documentation for information on
the other options in the Auto generated comments subpane.

Custom Comments Subpane
The Custom comments subpane supports options that are specific to the
ERT target. These options let you enable or suppress generation of descriptive

3-18

Guide to the ERT Target Options

information in comments for blocks and other objects in the model. These
options are

• Simulink block descriptions: You can enter descriptive information for
any block in the Description field of the Block Properties dialog. When
you select Simulink block descriptions, the code generator:

- Includes the text specified in the Description field in the comments for
the code generated for each block

- Adds a comment that includes the block name at the start of the code for
each block, regardless of whether you select Simulink block comments

The block description text and block names generated as comments
can include international (non-US-ASCII) characters. (For details
on international character support, see “Support for International
(Non-US-ASCII) Characters ” in the Real-Time Workshop documentation.)

Note For virtual blocks or blocks that have been removed due to block
reduction optimizations, no comments are generated.

• Simulink data object descriptions: You can enter descriptive
information for Simulink data objects (such as signal, parameter, data type,
and bus objects) with the Description field of the object properties in the
Simulink Model Explorer. When the Simulink data object descriptions
option is selected, the Description text is included in comments in code
generated for each object.

• Custom comments (MPT objects only): You can include comments just
above signals and parameter identifiers in the generated code as specified
in an M-code or TLC function. See the Module Packaging Features
document for more information.

• Stateflow object descriptions: You can enter descriptive information
for any Stateflow state, chart, transition, or graphical function in the
Description field of the Properties dialog of the Stateflow object. When
you select Stateflow object descriptions, the code generator includes
the Description text in comments that appear just above the code
generated for each object, including any international (non-US-ASCII)
characters. (For details on international character support, see “Support

3-19

3 Code Generation Options and Optimizations

for International (Non-US-ASCII) Characters ” in the Real-Time Workshop
documentation.)

• Requirements in block comments: When you select Requirements
in block comments, the code generator includes the requirements that
you assigned to Simulink blocks in the generated code comments. For more
information, see “Including Requirements with Generated Code” in the
Simulink Verification and Validation documentation.

3-20

Guide to the ERT Target Options

Symbols Pane
The Symbols pane contains options that control the generation of symbols
(such as variable names) in generated code. Most of these options are specific
to the ERT target. Some Symbols pane options are common to all targets;
these are described in the Real-Time Workshop documentation.

Auto-Generated Identifier Naming Rules Subpane

• Identifier format control: Provides parameter fields that let you
customize generated identifiers. You can enter macro strings that specify
whether, and in what order, certain substrings are included within
generated identifiers. The Identifier format control parameters affect
the generation of identifiers for

- Global variables

- Global types

- Field name of global types

- Subsystem methods

3-21

3 Code Generation Options and Optimizations

- Local temporary variables

- Local block output variables

- Constant macros

For details on how to specify formats, see “Specifying Identifier Formats”
on page 3-23. For limitations that apply, see “Identifier Format Control
Parameters Limitations” on page 3-29.

• Minimum mangle length: See “Name Mangling” on page 3-25.

• Maximum identifier length: Specifies the maximum number of
characters (default 31) in generated function, typedef, and variable names.
If you expect your model to generate lengthy identifiers (due to use of long
signal or parameter names, for example), or you find that identifiers are
being mangled more than expected, you should increase the Maximum
identifier length.

Note that the Maximum identifier length interacts with the Identifier
format control specifications, as described below.

• Generate scalar inlined parameters as: This option takes effect when
the Inline parameters option is selected. For scalar inlined parameters,
this menu lets you control how parameter values are expressed in the
generated code. You can specify one of the following:

- Literals: Parameters are expressed as numeric constants. This is the
default, and is backward compatible with prior versions of Real-Time
Workshop that did not support this option. Use of Literals can help
in debugging TLC code, as it makes the values of parameters easy to
search for.

- Macros: Parameters are expressed as variables (with #define macros).
The Macros option can make code more readable.

Simulink Data Object Naming Rules Subpane

• Signal naming: Use this option to define rules that change the names
of a model’s signals.

• Parameter naming: Use this option to define rules that change the
names of all of a model’s parameters.

3-22

Guide to the ERT Target Options

• #define naming: Use this option to define rules that change the names of
a model’s parameters that have a storage class of Define.

For more information on these options, see the Module Packaging Features
document.

Specifying Identifier Formats
The Identifier format control parameters let you customize generated
identifiers by entering a macro string that specifies whether, and in what
order, certain substrings are included within generated identifiers. For
example, you can specify that the root model name be inserted into each
identifier.

The macro string can include

• Tokens of the form $X, where X is a single character. Valid tokens are listed
in Identifier Format Tokens on page 3-23. You can use or omit tokens as
you want, with the exception of the $M token, which is required (see “Name
Mangling” on page 3-25) and subject to the use and ordering restrictions
noted in Identifier Format Control Parameter Values on page 3-25.

• Any valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens (in the
order listed in Identifier Format Tokens on page 3-23) and inserting the
resultant strings into the identifier. Character strings between tokens are
simply inserted directly into the identifier. Contiguous token expansions are
separated by the underscore (_) character.

Identifier Format Tokens

Token Description

$M Insert name mangling string if required to avoid naming
collisions (see “Name Mangling” on page 3-25). Note: This
token is required.

$F Insert method name (for example, _Update for update
method). This token is available only for subsystem
methods.

3-23

3 Code Generation Options and Optimizations

Identifier Format Tokens (Continued)

Token Description

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is
being generated.

$R Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.
Note that when using model referencing, this token
is required in addition to $M (see “Model Referencing
Considerations” on page 3-28).

Note: This token replaces the Prefix model name to
global identifiers option used in previous releases.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by Simulink. This token
is available only for subsystem methods and field names of
global types.

Note: This token replaces the Include System
Hierarchy Number in Identifiers option used in
previous releases.

$A Insert data type acronym (for example, i32 for long
integers) to signal and work vector identifiers. This token
is available only for local block output variables and field
names of global types.

Note: This token replaces the Include data type
acronym in identifier option used in previous releases.

Identifier Format Control Parameter Values on page 3-25 lists the default
macro string, the supported tokens, and the applicable restrictions for each
Identifier format control parameter.

3-24

Guide to the ERT Target Options

Identifier Format Control Parameter Values

Parameter
Default
Value

Supported
Tokens Restrictions

Global
variables

RN$M $R, $N, $M $F, $H, and $A are disallowed.

Global types NR$M $N, $R, $M $F, $H, and $A are disallowed.

Field name of
global types

NM $N, $M, $H,
$A

$R and $F are disallowed.

Subsystem
methods

RNMF $R, $N, $M,
$F, $H

$F and $H are empty for
Stateflow functions; $A is
disallowed.

Local
temporary
variables

NM $N, $M, $R $F, $H, and $A are disallowed.

Local block
output
variables

rtb_NM $N, $M, $A $R, $F, and $H are disallowed.

Constant
macros

RN$M $R, $N, $M $F, $H, and $A are disallowed.

Non-ERT based targets (such as the GRT target) implicitly use a default
RN$M specification. This specifies identifiers consisting of the root model
name, followed by the name of the generating object (signal, parameter,
state, and so on), followed by a name mangling string (see “Name Mangling”
on page 3-25).

For limitations that apply to Identifier format control parameters, see
“Identifier Format Control Parameters Limitations” on page 3-29.

Name Mangling
In identifier generation, a circumstance that would cause generation of two or
more identical identifiers is called a name collision. Name collisions are never
permissible. When a potential name collision exists, unique name mangling
strings are generated and inserted into each of the potentially conflicting

3-25

3 Code Generation Options and Optimizations

identifiers. Each name mangling string is guaranteed to be unique for each
generated identifier.

The position of the $M token in the Identifier format control parameter
specification determines the position of the name mangling string in the
generated identifiers. For example, if the specification RN$M is used, the
name mangling string is appended (if required) to the end of the identifier.

The Minimum mangle length parameter specifies the minimum number
of characters used when a name mangling string is generated. The default
is 1 character. As described below, the actual length of the generated string
may be longer than this minimum.

Traceability
An important aspect of model based design is the ability to generate identifiers
that can easily be traced back to the corresponding entities within the model.
To ensure traceability, it is important to make sure that incremental revisions
to a model have minimal impact on the identifier names that appear in
generated code. There are two ways of achieving this in Real-Time Workshop
embedded Coder:

1 Choose unique names for objects in Simulink (blocks, signals, states, and
so on) as much as possible.

2 Make use of name mangling when conflicts cannot be avoided.

When conflicts cannot be avoided (as may be the case in models that use
libraries or model reference), name mangling ensures traceability. The
position of the name mangling string is specified by the placement of the $M
token in the Identifier format control parameter specification. Mangle
characters consist of lower case characters (a-z) and numerics (0-9), which
are chosen with a checksum that is unique to each object. How Name
Mangling Strings Are Computed on page 3-27 describes how this checksum is
computed for different types of objects.

3-26

Guide to the ERT Target Options

How Name Mangling Strings Are Computed

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block Full path name of block

Simulink
parameter

Full name of parameter owner (that is, model or block)
and parameter name

Simulink signal Signal name, full name of source block, and port
number

Stateflow objects Complete path to Stateflow block and Stateflow
computed name (unique within chart)

The length of the name mangling string is specified by the Minimum mangle
length parameter. The default value is 1, but this automatically increases
during code generation as a function of the number of collisions.

To minimize disturbance to the generated code during development, specify
a larger Minimum mangle length. A Minimum mangle length of 4 is a
conservative and safe value. A value of 4 allows for over 1.5 million collisions
for a particular identifier before the mangle length is increased.

Minimizing Name Mangling
Note that the length of generated identifiers is limited by the Maximum
identifier length parameter. When a name collision exists, the $M token is
always expanded to the minimum number of characters required to avoid the
collision. Other tokens and character strings are expanded in the order listed
in Identifier Format Tokens on page 3-23. If the Maximum identifier length
is not large enough to accommodate full expansions of the other tokens,
partial expansions are used. To avoid this outcome, it is good practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model.

• Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate.

3-27

3 Code Generation Options and Optimizations

Set the Minimum mangle length parameter to reserve at least three
characters for the name mangling string. The length of the name mangling
string increases as the number of name collisions increases.

Note that an existing name mangling string increases or decreases in
length if changes to model create more (or fewer) collisions. If the length of
the name mangling string increases, additional characters are appended
to the existing string. For example, 'xyz' might change to 'xyzQ'. In the
inverse case (fewer collisions) 'xyz' would change to 'xy'.

Model Referencing Considerations
Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from a
model that uses model referencing:

• The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens. A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the identifier from the referenced model is preserved. Name mangling is
performed on the identifier from the higher-level model.

Exceptions to Identifier Formatting Conventions
There are some exceptions to the identifier formatting conventions described
above:

• Type name generation: The above name mangling conventions do not
apply to type names (that is, typedef statements) generated for global
data types. If the $R token is included in the Identifier format control
parameter specification, the model name is included in the typedef. The
Maximum identifier length parameter is not respected when generating
type definitions.

• Non-Auto storage classes: The Identifier format control parameter
specification does not affect objects (such as signals and parameters)

3-28

Guide to the ERT Target Options

that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Identifier Format Control Parameters Limitations
The following limitations apply to the Identifier format control parameters:

• The following auto-generated identifiers currently do not fully comply
with the setting of the Maximum identifier length parameter on the
Real-Time Workshop/Symbols pane of the Configuration Parameters
dialog or Model Explorer.

- Global variables for Stateflow or Embedded MATLAB

• For example, sfevent, which is present if events are declared in a
Stateflow chart. The applicable format string is _sfEvent_$R_, so the
model name can be up to 21 characters without exceeding the default
Maximum identifier length of 31.

• For example, machine-parented data. Avoid using machine-parented
data and instead use data store memory.

- Global types generated by Stateflow or Embedded MATLAB

• For example, CSc1_$R_ChartStruct. The model name can be up to
12 characters without exceeding the default Maximum identifier
length of 31, provided there are less than 1000 charts in a model.

- Field names for global types generated by Simulink

- Field names for global types generated by Stateflow or Embedded
MATLAB

- Model methods

• The applicable format string is RF, and the longest $F is
_derivatives, which is 12 characters long. The model name can
be up to 19 characters without exceeding the default Maximum
identifier length of 31.

- Local functions generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

3-29

3 Code Generation Options and Optimizations

- Fixed-point shared utility macros or shared utility functions

- Simulink rtm macros

• Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples
are RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

- Define protection guard macros

• Header file guards, such as _RTW_HEADER_$(filename)_h_, which
can exceed the default Maximum identifier length of 31 given a
filename such as $R_private.h.

• Include file guards, such as _$R_COMMON_INCLUDES_.

• Typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

• In some situations, the following identifiers potentially can conflict with
others.

- Stateflow or Embedded MATLAB local variables

- Global variables for Stateflow or Embedded MATLAB

- Global types generated by Stateflow or Embedded MATLAB

- Model methods

- Local functions generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

- Fixed-point shared utility macros or shared utility functions

- Include header guard macros

• The following external identifiers that are unknown to Simulink may
potentially conflict with auto-generated identifiers.

- Identifiers defined in custom code

- Identifiers defined in custom header files

- Identifiers introduced through a non-ANSI-C standard library

3-30

Guide to the ERT Target Options

- Identifiers defined by custom TLC code

• Identifiers generated for simulation targets may exceed the Maximum
identifier length. Simulation targets include the model reference
simulation target, the Simulink Accelerator target, the RSim target, and
the S-function target.

3-31

3 Code Generation Options and Optimizations

Interface Pane
The Interface pane provides options software environment, code interface,
validation, and data exchange options.

Software Environment Subpane
The Software Environment subpane contains options that affect the overall
operation of the generated program:

• Target floating-point math environment: This menu provides three
options:

- ANSI_C: (default) Select this option to generate calls to the ANSI C
(ANSI X3.159-1989) math library for floating-point functions.

- ISO_C: Select this option to generate calls to the ISO C (ISO/IEC
9899:1999) math library wherever possible.

- GNU: Select this option to generate calls to the GNU C math library.

3-32

Guide to the ERT Target Options

If your target compiler supports the ISO C (ISO/IEC 9899:1999) math
library, you should select the ISO_C option and setting your compiler’s ISO
C option. This generates calls to the ISO C functions wherever possible (for
example, sqrtf() instead of sqrt() for single precision data) and ensure
that you obtain the best performance your target compiler offers.

• Utility function generation: See the Real-Time Workshop documentation
for information on this option.

• Support floating-point / non-finite / complex numbers: These options
let you enable or suppress the generation of floating-point, complex, or
nonfinite numbers. By default, all three options are selected.

To generate pure integer code, deselect the Support floating-point
numbers option. If your model requires generation of floating-point data
or operations, select the Support floating-point numbers option. When
Support floating-point numbers is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation.
The error message reports the offending blocks and parameters.

The Support floating-point numbers option replaces, and inverts the
logic of, the Integer code only option that was supported in previous
releases. Note that for compatibility, models that were configured for
Integer code only prior to Release 14 are configured automatically with
Support floating-point numbers deselected, and therefore continue to
generate pure integer code.

The Support non-finite numbers option is enabled only when Support
floating-point numbers is selected. This option lets you enable or
suppress generation of non-finite values (for example, NaN, Inf).

The Support complex numbers option is independent of the other two
options. This option lets you enable or suppress generation of complex
numbers.

• Support absolute time: Certain blocks require the value of either
absolute time (that is, the time from the start of program execution to
the present time) or elapsed time (for example, the time elapsed between
two trigger events). These related options determine how the ERT target
provides absolute or elapsed time values to blocks in the model.

By default, Support absolute time is selected. In this case, the ERT
target generates and maintains integer counters if a block in the model
requires absolute or elapsed time values. The target does not generate the

3-33

3 Code Generation Options and Optimizations

counters if model blocks do not use time values. When Support absolute
time is deselected, an error is raised at code generation time if any blocks
requiring absolute or elapsed time values are present in the model.

For further information on the allocation and operation of absolute and
elapsed timers, see the “Timing Services” chapter of the Real-Time
Workshop documentation.

• Support continuous time: If this option is selected, the ERT target
supports code generation for continuous-time blocks. By default, this
option is deselected, and the build process generates an error if any
continuous-time blocks are present in the model.

Note that continuous time is not supported when generating an ERT
S-function wrapper (see “Automatic S-Function Wrapper Generation” on
page 3-64).

• Support non-inlined S-functions: If this option is selected, the ERT
target supports code generation for non-inlined S-functions. By default,
this option is deselected, and the build process generates an error if any
C-MEX S-function that does not have a corresponding TLC implementation
(for inlining code generation) is present in the model.

Generation of non-inlined S-functions requires support for both
floating-point and non-finite numbers. When the Support non-inlined
S-functions option is selected, the Support floating-point numbers and
Support non-finite numbers options are automatically selected.

Note that inlining S-functions is highly advantageous in production code
generation, for example in implementing device drivers. You may want
to deselect Support non-inlined S-functions to enforce use of inlined
S-functions for code generation.

Code Interface Subpane
The Code interface subpane contains options that control whether or not
certain model functions are generated and how arguments are passed to
functions:

• GRT compatible call interface: When this option is selected, Real-Time
Workshop Embedded Coder generates model function calls that are
compatible with the main program module of the GRT target (grt_main.c

3-34

Guide to the ERT Target Options

or .cpp). These calls act as wrappers that interface to ERT (Embedded-C
format) generated code.

This option provides a quick way to use ERT target features with a
GRT-based custom target that has a main program module based on
grt_main.c or .cpp.

Note When GRT compatible call interface is selected, MAT-file
logging must also be selected, and Suppress error status in real-time
model data structure must be deselected.

• Single output/update function: By default, this option is selected, and
the output and update functions are combined in a single model_step
function. This reduces overhead and allows Real-Time Workshop Embedded
Coder to use more local variables in the step function of the model.

• Terminate function required: By default, this option is selected, and
a model_terminate function is generated (for more information, see the
description of “model_terminate” on page 2-24). Deselect this option if
your application is designed to run indefinitely and does not require a
terminate function.

• Generate reusable code: The Generate reusable code option and its
related options let you generate reusable, reentrant code from a model
or subsystem. When Generate reusable code option is deselected (the
default), model data structures are statically allocated and accessed
directly in the model code. Therefore the model code is neither reusable
nor reentrant.

“Model Entry Points” on page 2-22 documents the calling interface
generated for the model functions in the default case.

When Generate reusable code is selected, the Code interface subpane
displays and enables the additional options:

- Reusable code error diagnostic

- Pass root-level I/O as

3-35

3 Code Generation Options and Optimizations

The figure below shows these options at their default values.

When Generate reusable code is selected, data structures such as block
states, parameters, external outputs, and so on, are passed in (by reference)
as arguments to model_step and other generated model functions. These
data structures are also exported with model.h.

The Pass root-level I/O as: menu provides options that control how
model inputs and outputs at the root level of the model are passed in to the
model_step function. The options are

- Individual arguments: This option is the default. Each root-level
model input and output is passed to model_step as a separate argument.

- Structure reference: When this option is selected, all root-level inputs
are packed into a struct that is passed to model_step as an argument.
Likewise, all root-level outputs are packed into a struct that is also
passed to model_step as an argument.

In some cases, selecting Generate reusable code may generate code
that compiles but is not reentrant. For example, if any signal, DWork
structure, or parameter data has a storage class other than Auto, global
data structures are generated. To handle such cases, the Reusable code
error diagnostic menu is enabled when Generate reusable code is
selected. This menu offers a choice of three severity levels for diagnostics to
be displayed in such cases:

- None: Build proceeds without displaying a diagnostic message.

- Warning: Build proceeds after displaying a warning message.

- Error: Build aborts after displaying an error message.

In some cases, Real-Time Workshop Embedded Coder is unable to generate
valid and compilable code. For example, if the model contains any of the
following, the code generated would be invalid.

3-36

Guide to the ERT Target Options

- An S-function that is not code-reuse compliant

- A subsystem triggered by a wide function call trigger

In these cases, the build terminates after reporting the problem.

• Suppress error status in real-time model data structure: If you do
not need to log or monitor error status in your application, select this option.

By default, the real-time model data structure (rtModel) includes an error
status field. This field lets you log and monitor error messages with macros
provided for this purpose (see “rtModel Accessor Macros” on page 2-3). If
Suppress error status in real-time model data structure is selected,
the error status field is not included in rtModel. Selecting this option may
also cause the real-time model data structure to disappear completely from
the generated code.

When generating code for multiple models that are integrated together,
make sure that the Suppress error status in real-time model data
structure option is set the same for all of the models. Otherwise, the
integrated application may exhibit unexpected behavior. For example, if
the option is selected in one model but not in another, the error status may
or may not be registered by the integrated application.

Do not select Suppress error status in real-time model data structure
if the MAT-file logging option is also selected. The two options are
incompatible.

Verification Subpane
The Verification subpane contains options that are useful for verifying
generated code in Simulink.

• Create Simulink (S-Function) block: Selecting this option lets you
generate an S-function wrapper that calls your C or C++ code from within
Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your
code into a model with minimal modification. See “Automatic S-Function
Wrapper Generation” on page 3-64 for information on this feature.

• MAT-file logging: This option enables or suppresses MAT-file logging. By
default, MAT-file logging is deselected. This default is appropriate for
embedded applications, which typically do not support a file system. Also,

3-37

3 Code Generation Options and Optimizations

suppression of MAT-file logging eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option has
the following effects:

- Under certain conditions, code and storage associated with root
output ports are eliminated, achieving further efficiency. See “Use the
Virtualized Output Ports Optimization” on page 3-56 for information.

- The model_step function does not check the current time against the
stop time. Therefore the generated program runs indefinitely, regardless
of the setting of the model’s stop time. The ert_main program displays a
message notifying you that the program runs indefinitely.

MAT-file logging requires support for both floating-point and non-finite
numbers. When the MAT-file logging option is selected, the Support
floating-point numbers and Support non-finite numbers options are
automatically selected.

• MAT-file variable name modifier: This menu is displayed when
MAT-file logging is selected. The menu selects a string to be added to the
variable names used when logging data to MAT-files.

Data Exchange Subpane
The Data Exchange subpane contains options related to interfacing model
data to systems external to the generated code. These options are selected
with the Interface menu. Depending on the choice selected from the
Interface menu, different suboptions are displayed dynamically below the
Interface menu. The Interface menu offers the following choices:

• C-API: Generate C API code that allows externally written code to access
block outputs (signals) and/or parameters. For documentation of the C API
for signals and parameters, see the Real-Time Workshop documentation.

• External mode: Generate external mode support code. If you want to
deploy external mode code on an embedded target, see “Using External
Mode with the ERT Target” on page 3-59 for special considerations.

• ASAP2: Export an ASAP2 file containing information about the model
during the code generation process. See the “Generating an ASAP2 File”
section of the Real-Time Workshop documentation for detailed information.

• None: (default) No data exchange code is generated.

3-38

Guide to the ERT Target Options

Templates Pane
The Templates pane contains advanced options that enable you to customize
generated code.

Code Templates and Data Templates Subpanes
Code and data templates provide extensive code customization features,
which are described in the Module Packaging Features document. Brief
descriptions of the options for specifying such templates follow:

• Source file (*.c) template: Use this option to create or edit a code
template.

• Course file (*.h) template: Use this option to create or edit a data
template.

See also “Generating Custom File Banners” on page 6-53 for a simple example
of how a code template can be applied to generate customized comment
sections in generated code files.

3-39

3 Code Generation Options and Optimizations

Custom Templates Subpane

• File customization template: This option lets you specify a custom file
processing template (CFP) template file. CFP templates let you customize
generated code by organizing generated code into sections (such as includes,
typedefs, functions, and more). A CFP template can emit code, directives,
or comments into each section as required. See “Custom File Processing”
on page 6-32 for detailed information.

• Generate an example main program: This option and the related
Target operating system menu let you generate a model-specific example
main program module. See “Generating the Main Program” on page 2-8.

3-40

Guide to the ERT Target Options

Data Placement Pane
The Data Placement pane contains advanced options for Module Packaging
Features. For details on using these options, see the Module Packaging
Features document.

• Data definition: Use this option to specify whether data is to be defined in
the generated source file or in a single separate header file.

• Data declaration: Use this option to specify whether data is to be
declared in the generated source file or in a single separate header file.

• #include file delimiter: Use this option to specify the #include
file delimiter to be used in generated files that contain the #include
preprocessor directive for MPF data objects.

• Module naming: This option lets you name the generated module using
the same name as the model or a user-specified name.

• Signal display level: Use this option to control whether signal data
objects are to be declared as global data in the generated code.

3-41

3 Code Generation Options and Optimizations

• Parameter tune level: This option lets you declare a parameter data
object as tunable global data in the generated code.

• Source of initial values: Although this option is visible, it is obsolete
and the setting has no effect. Use Simulink.Signal objects to initialize
signal values, as explained in “Initializing Signals and Discrete States” in
the Simulink documentation.

3-42

Guide to the ERT Target Options

Data Type Replacement Pane
The Data Type Replacement pane provides an interface for replacing
built-in data type names with user-defined replacement data type names in
the generated code for your model.

If you select Replace data type names in the generated code, the Data
type names table is displayed:

3-43

3 Code Generation Options and Optimizations

The table Data type names lists each Simulink built-in data type name
along with its Real-Time Workshop data type name. Selectively fill in fields in
the third column with your replacement data types. Each replacement data
type should be the name of a Simulink.AliasType object that exists in the
base workspace. Replacements may be specified or not for each individual
built-in type.

For each replacement data type entered, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces. For double, single, int32, int16, int8, uint32,
uint16, uint8, and boolean, the replacement data type’s BaseType must
match the built-in data type. For int, uint, and char, the replacement data
type’s size must match the size displayed for int or char on the Hardware
Implementation pane of the Configuration Parameters dialog. An error
occurs if a replacement data type specification is inconsistent. For more
information, see “Replacing Built-In Data Type Names in Generated Code” in
the Module Packaging Features document.

3-44

Guide to the ERT Target Options

Memory Sections Pane
The Memory Sections pane provides an interface for inserting comments
and pragmas into the generated code for

• Data defined in custom storage classes

• Internal data not defined in custom storage classes

• Model-level functions

• Atomic subsystem functions with or without separate data

For details on using memory sections, see Chapter 5, “Memory Sections”.

• Package: Use this field to specify the package that contains the memory
sections that you want to apply. To refresh the list of available packages in
your configuration, click Refresh package list.

• Initialize/Terminate: Use this field to apply memory sections to:

3-45

3 Code Generation Options and Optimizations

- Initialize/Start functions

- Terminate functions

• Execution: Use this field to apply memory sections to:

- Step functions

- Run-time initialization functions

- Derivative functions

- Enable functions

- Disable functions

• Constants: Use this field to apply memory sections to:

Data Definition Data Purpose

model_cP Constant parameters

model_cB Constant block I/O

model_Z Zero representation

• Inputs/Outputs: Use this field to apply memory sections to:

Data Definition Data Purpose

model_U Root inputs

model_Y Root outputs

• Internal data: Use this field to apply memory sections to:

Data Definition Data Purpose

model_B Block I/O

model_D D-work vectors

model_M Run-time model

model_Zero Zero-crossings

3-46

Guide to the ERT Target Options

• Parameters: Use this field to apply memory sections to:

Data Definition Data Purpose

model_P Parameters

3-47

3 Code Generation Options and Optimizations

Optimization Pane
Most of the options in the Optimization pane are common to all targets,
including all options listed in the Simulation and code generation
and Signals subpanes. These are described in the Real-Time Workshop
documentation.

When you select the ERT target (or a target derived from the ERT target),
additional options are displayed. These options are described below.

3-48

Guide to the ERT Target Options

Code Generation Subpane
The Parameter structure menu lets you control how parameter data is
generated for reusable subsystems. (If you are not familiar with reusable
subsystem code generation, see “Nonvirtual Subsystem Code Generation
Options” in the Real-Time Workshop documentation.)

The Parameter structure menu is enabled when the Inline parameters
option is on. The menu lets you select the following options:

• Hierarchical: This option is the default. When the Hierarchical
option is selected, Real-Time Workshop Embedded Coder generates a
separate header file, defining an independent parameter structure, for each
subsystem that meets the following conditions:

- The Reusable function option is selected in the subsystem’s RTW
system code menu, and the subsystem meets all conditions for
generation of reusable subsystem code.

- The subsystem does not access any parameters other than its own (such
as parameters of the root-level model).

When the Hierarchical option is selected, each generated subsystem
parameter structure is referenced as a substructure of the root-level
parameter data structure, which is therefore called a hierarchical data
structure.

• Non-hierarchical: When this option is selected, Real-Time Workshop
Embedded Coder generates a single parameter data structure. This is a
flat data structure; subsystem parameters are defined as fields within the
structure. Using a nonhierarchical data structure can reduce compiler
padding between word boundaries in many cases; this produces more
efficient compiled code.

3-49

3 Code Generation Options and Optimizations

Data Initialization Subpane

• Remove root-level I/O zero initialization: When this option is off (the
default), initialization code for root-level inports and outports whose value
is zero is generated. Otherwise, initialization code for such inports and
outports is not generated.

• Use memset to initialize floats and doubles to 0.0: When Use memset
to initialize floats and doubles to 0.0 is off (the default), additional
code is generated to set float and double storage explicitly to the value
0.0.When this option is on, the memset function clears internal storage
(regardless of type) to the integer bit pattern 0 (that is, all bits are off). The
additional code generated when the option is off, is slightly less efficient.

If the representation of floating-point zero used by your compiler and
target CPU is identical to the integer bit pattern 0, you can gain efficiency
by turning on this option.

• Remove internal state zero initialization: When this option is off (the
default), initialization code that initializes internal work structures (for
example, block states and block outputs) to zero is generated. Otherwise,
the initialization code is not generated.

• Optimize initialization code for model reference: When this option
is on (the default), Real-Time Workshop generates run-time initialization
code for a block that has states only if the block is in a system that can reset
its states, such as an enabled subsystem. This results in more efficient
code, but requires that you not refer to the model from a Model block that
resides in a system that resets its states. Such nesting results in an error.
Turn this option off only if your application requires you refer to the model
from Model blocks in systems that can reset their states.

3-50

Guide to the ERT Target Options

Integer and Fixed-Point Subpane

• Remove code from floating-point to integer conversions that wraps
out-of-range values: This option causes Real-Time Workshop to remove
code that ensures that execution of the generated code produces the same
results as simulation when out-of-range conversions occur. This reduces
the size and increases the speed of the generated code at the cost of
potentially producing results that do not match simulation in the case of
out-of-range values.

Enabling this option affects code generation results only for out-of-range
values and cannot cause code generation results to differ from simulation
results for in-range values.

• Remove code that protects against division arithmetic exceptions:
This option suppresses generation of code that guards against fixed-point
division by zero. By default, this option is deselected.

When you select this option, simulation results and results from generated
code may no longer be in bit-for-bit agreement.

Simulation and Code Generation Subpane

Note The Application lifespan (days) parameter in the Simulation and
code generation subpane lets you minimize the allocation of memory for
absolute and elapsed time counters. The word size of the counters (8, 16,
32, or 64 bits), is allocated optimally, to accommodate the maximum value
specified in Application lifespan (days) field. For further information on
the allocation and operation of absolute and elapsed timers, see the“Timing
Services” section of the Real-Time Workshop documentation.

3-51

3 Code Generation Options and Optimizations

Tips for Optimizing the Generated Code
Real-Time Workshop Embedded Coder features a number of code generation
options that can help you further optimize the generated code. This section
highlights code generation options you can use to improve performance and
reduce code size.

Most of the tips in this section apply specifically to the ERT target. See
also the “Optimizing a Model for Code Generation” section of the Real-Time
Workshop documentation for optimization techniques that are common to all
target configurations.

Use Auto-Optimized Targets
To make it easier for you to generate the most efficient code for your target
CPU, Real-Time Workshop Embedded Coder provides two auto-optimized
ERT target variants. These target variants are optimized, respectively, for
fixed-point and floating-point code generation.

Before generating and deploying code, consider using one of these optimized
target variants. The optimized ERT target variants are discussed in detail in
“Generating Efficient Code with Optimized ERT Targets” on page 6-23.

Use Configuration Wizard Blocks
Real-Time Workshop Embedded Coder provides a library of Configuration
Wizard blocks and scripts to help you configure and optimize code generation
from your models quickly and easily.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, an M-file script executes and configures all parameters
of the model’s active configuration set without user intervention. The preset
blocks configure the options optimally for common fixed- and floating-point
code generation scenarios.

You can also create custom Configuration Wizard scripts and blocks.

See “Optimizing Your Model with Configuration Wizard Blocks and Scripts”
on page 6-59 for detailed information.

3-52

Tips for Optimizing the Generated Code

Set Hardware Implementation Parameters Correctly
Correct specification of target-specific characteristics of generated code
(such as word sizes for char, short, int, and long data types, or desired
rounding behaviors in integer operations) can be critical in embedded
systems development. The Hardware Implementation category of options
in a configuration set provides a simple and flexible way to control such
characteristics in both simulation and code generation.

Before generating and deploying code, you should become familiar with the
options on the Hardware Implementation pane of the Configuration
Parameters dialog. See the “Hardware Implementation Pane” section of the
Simulink User’s Guide and the “Hardware Implementation Options” section
of the Real-Time Workshop documentation for full details on the Hardware
Implementation pane.

By configuring the Hardware Implementation properties of your model’s
active configuration set to match the behaviors of your compiler and hardware,
you can generate more efficient code. For example, if you specify the Byte
ordering property, you can avoid generation of extra code that tests the byte
ordering of the target CPU.

You can use the rtwdemo_targetsettings demo model to determine some
implementation-dependent characteristics of your C or C++ compiler, as well
as characteristics of your target hardware. By using this model in conjunction
with your target development system and debugger, you can observe the
behavior of the code as it executes on the target. You can then use this
information to configure the Hardware Implementation parameters of
your model.

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

3-53

3 Code Generation Options and Optimizations

Remove Unnecessary Initialization Code
Consider selecting the Remove internal state zero initialization and
Remove root-level I/O zero initialization data options on the Data
initialization subpane under Optimization.

These options (both off by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose value
is zero is a precaution and may not be necessary for your application. Many
embedded application environments initialize all RAM to zero at startup,
making generation of initialization code redundant.

However, be aware that if you select Remove internal state zero
initialization, it is not guaranteed that memory is in a known state each
time the generated code begins execution. If you turn the option on, running
a model (or a generated S-function) multiple times can result in different
answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove
internal state zero initialization if you want to test the behavior of
your design during a warm boot (that is, a restart without full system
reinitialization).

In cases where you have turned on Remove internal state zero
initialization but still want to get the same answer on every run from a
Real-Time Workshop Embedded Coder generated S-function, you can use
either of the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets you
control the representation of zero used during initialization. See “Data
Initialization Subpane” on page 3-50.

3-54

Tips for Optimizing the Generated Code

Note that the code still initializes data structures whose value is not zero
when Remove internal state zero initialization and Remove root-level
I/O zero initialization data are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes is never initialized, regardless of the settings of these options.

Generate Pure Integer Code If Possible
If your application uses only integer arithmetic, deselect the Support
floating-point numbers option in the Software environment section of
the Interface pane to ensure that generated code contains no floating-point
data or operations. When this option is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation. The
error message reports the offending blocks and parameters.

Disable MAT-File Logging
Clear the MAT-file logging option in the Verification section of the
Interface pane. This setting is the default, and is recommended for
embedded applications because it eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option lets you
exploit further efficiencies under certain conditions. See “Use the Virtualized
Output Ports Optimization” on page 3-56 for information.

Note also that code generated to support MAT-file logging invokes malloc,
which may be undesirable for your application.

3-55

3 Code Generation Options and Optimizations

Use the Virtualized Output Ports Optimization
The virtualized output ports optimization lets you store the signal entering
the root output port as a global variable. This eliminates code and data
storage associated with root output ports when the MAT-file logging option
is cleared and the TLC variable FullRootOutputVector equals 0, both of
which are defaults for Real-Time Workshop Embedded Coder.

To illustrate this feature, consider the model shown in the following block
diagram. Assume that the signal exportedSig has exportedGlobal storage
class.

In the default case, the output of the Gain block is written to the signal
storage location, exportedSig. No code or data is generated for the Out1
block, which has become, in effect, a virtual block. This is shown in the
following code fragment.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in
the previous example, but with MAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the
external outputs vector.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */
VirtOutPortLogON_Y.Out1 = exportedSig;

3-56

Tips for Optimizing the Generated Code

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter the
assignment with TLC options on the Real-Time Workshop pane of the
Configuration Parameters dialog.

For more information on how to control signal storage in generated code,
see the “Working with Data Structures” section of the Real-Time Workshop
documentation.

Use Stack Space Allocation Options
Real-Time Workshop offers a number of options that let you control how
signals in your model are stored and represented in the generated code. This
section discusses options that

• Let you control whether signal storage is declared in global memory space,
or locally in functions (that is, in stack variables).

• Control the allocation of stack space when using local storage.

For a complete discussion of signal storage options, see the “Working with
Data Structures” section of the Real-Time Workshop documentation.

If you want to store signals in stack space, you must turn the Enable local
block outputs option on. To do this

1 Select the Optimization tab of the Configuration Parameters dialog. Make
sure that the Signal storage reuse option is selected. If Signal storage
reuse is off, the Enable local block outputs option is not available.

2 Select the Enable local block outputs option. Click Apply if necessary.

3-57

3 Code Generation Options and Optimizations

Your embedded application may be constrained by limited stack space. When
the Enable local block outputs option is on, you can limit the use of stack
space by using the following TLC variables:

• MaxStackSize: The total allocation size of local variables that are declared
by all block outputs in this model cannot exceed MaxStackSize (in bytes).
MaxStackSize can be any positive integer. If the total size of local block
output variables exceeds this maximum, the remaining block output
variables are allocated in global, rather than local, memory. The default
value for MaxStackSize is rtInf, that is, unlimited stack size.

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using runtime (empirical) analysis or static (code
path) analysis with object code.

• MaxStackVariableSize: Limits the size of any local block output variable
declared in the code to N bytes, where N>0. A variable whose size exceeds
MaxStackVariableSize is allocated in global, rather than local, memory.
The default is 4096.

To set either of these variables, use assign statements in the system target
file (ert.tlc), as in the following example.

%assign MaxStackSize = 4096

You should write your %assign statements in the Configure RTW code
generation settings section of the system target file. The %assign
statement is described in the Target Language Compiler document.

3-58

Tips for Optimizing the Generated Code

Using External Mode with the ERT Target
Selecting the External mode option turns on generation of code to support
external mode communication between host (Simulink) and target systems.
Real-Time Workshop Embedded Coder supports all features of Simulink
external mode, as described in the “External Mode” section of the Real-Time
Workshop documentation.

This section discusses external mode options that may be of special interest to
embedded systems designers.

The figure below shows the Interface pane of the Configuration Parameters
dialog, with External mode selected.

Memory Management
Consider the Memory management option Static memory allocation
before generating external mode code for an embedded target. Static memory
allocation is generally desirable, as it reduces overhead and promotes
deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static
memory allocation is deselected, communication buffers are allocated
dynamically (with malloc) at run time.

3-59

3 Code Generation Options and Optimizations

Generation of Pure Integer Code with External Mode
Real-Time Workshop Embedded Coder supports generation of pure integer
code when external mode code is generated. To do this, select the External
mode option, and deselect the Support floating-point numbers option in
the Software environment section of the Interface pane.

This enhancement lets you generate external mode code that is free of any
storage definitions of double or float data type, and allows your code to run on
integer-only processors

If you intend to generate pure integer code with External mode on, note
the following requirements:

• All trigger signals must be of data type int32. Use a Data Type Conversion
block if needed.

• When pure integer code is generated, the simulation stop time specified
in the Solver options is ignored. To specify a stop time, run your target
application from the MATLAB command line and use the -tf option. (See
“Running the External Program” in the “External Mode” section of the
Real-Time Workshop documentation.) If you do not specify this option, the
application executes indefinitely (as if the stop time were inf).

When executing pure integer target applications, the stop time specified
by the -tf command line option is interpreted as the number of base rate
ticks to execute, rather than as an elapsed time in seconds. The number of
ticks is computed as

stop time in seconds / base rate step size in seconds

3-60

Generating a Code Generation Report

Generating a Code Generation Report
The Real-Time Workshop Embedded Coder code generation report is an
enhanced version of the HTML code generation report normally generated by
Real-Time Workshop. The report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source
code in a MATLAB Web browser window. Optional hyperlinks within the
displayed source code let you view the blocks or subsystems from which the
code was generated. Click on the hyperlinks to view the relevant blocks or
subsystems in a Simulink model window.

• The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build,
and also those that are available. If you chose options that led to generation
of nonoptimal code, they are marked in red. This section can help you select
options that better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

To generate a code generation report,

1 Open the Configuration Parameters dialog and select the Real-Time
Workshop pane.

2 In the Documentation subpane, select Generate HTML report. By
default, Include hyperlinks to model and Launch report after code
generation completes are also selected, as shown in the figure below.

You can deselect either or both these options if desired.

3-61

3 Code Generation Options and Optimizations

3 Follow the usual procedure for generating code from your model or
subsystem.

4 Real-Time Workshop writes the code generation report files in the html
subdirectory of the build directory. The top-level HTML report file is named
model_codegen_rpt.html or subsystem_codegen_rpt.html.

5 If you selected Launch report after code generation completes,
Real-Time Workshop automatically opens a MATLAB Web browser window
and displays the code generation report.

If you did not select Launch report after code generation completes,
you can open the code generation report (model_codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser
window, or into another Web browser.

3-62

Generating a Code Generation Report

6 If you selected Include hyperlinks to model, hyperlinks to blocks in the
generating model are created in the report files. When you view the report
files in MATLAB, clicking on these hyperlinks displays and highlights
the referenced blocks in the model.

Notes

• For large models (containing over 1000 blocks), you may find that HTML
report generation takes longer than you want. In this case, consider
clearing the Include hyperlinks to model check box. The report will
be generated faster.

• You can also view the HTML report files, as well as the generated code
files, in the Simulink Model Explorer. See the Real-Time Workshop
documentation for details.

3-63

3 Code Generation Options and Optimizations

Automatic S-Function Wrapper Generation
An S-function wrapper is an S-function that calls your C or C++ code from
within Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your code into
a model with minimal modification. For a complete description of wrapper
S-functions, see the Simulink Writing S-Functions document.

Using the Real-Time Workshop Embedded Coder Create Simulink
(S-Function) block option, you can build, in one automated step:

• A non-inlined C or C++ MEX S-function wrapper that calls Real-Time
Workshop Embedded Coder generated code

• A model containing the generated S-function block, ready for use with
other blocks or models

This is useful for software-in-the-loop (SIL) code verification, as well as for
simulation acceleration purposes.

When the Create Simulink (S-Function) block option is on, Real-Time
Workshop generates an additional source code file, model_sf.c or .cpp, in the
build directory. This module contains the S-function that calls the Real-Time
Workshop Embedded Coder code that you deploy. You can use this S-function
within Simulink.

The build process then compiles and links model_sf.c or .cpp with model.c
or .cpp and the other Real-Time Workshop Embedded Coder generated code
modules, building a MEX-file. The MEX-file is named model_sf.mexext.
(mexext is the file extension for MEX-files on your platform, as given by
the MATLAB mexext command.) The MEX-file is stored in your working
directory. Finally, Real-Time Workshop creates and opens an untitled model
containing the generated S-Function block.

Note To generate a wrapper S-function for a subsystem, you can use a
right-click subsystem build. Right-click the subsystem block in your model,
select Real-Time Workshop > Generate S-Function, and in the Generate
S-Function dialog, select Use Embedded Coder and click Build.

3-64

Automatic S-Function Wrapper Generation

S-Function Wrapper Generation Limitations
The following limitations apply to Real-Time Workshop Embedded Coder
S-function wrapper generation:

• Continuous sample time is not supported. The Support continuous
time option should not be selected when generating an Embedded Coder
S-function wrapper.

• Models that contain S-function blocks for which the S-function is not
inlined with a TLC file are not supported when generating an Embedded
Coder S-function wrapper.

• You cannot use multiple instances of an Embedded Coder generated
S-function block within a model, because the code uses static memory
allocation. Each instance potentially can overwrite global data values of
the others.

• Embedded Coder generated S-function wrappers can be used with other
blocks and models for such purposes as SIL code verification and simulation
acceleration, but cannot be used for code generation.

3-65

3 Code Generation Options and Optimizations

Generating an S-Function Wrapper
To generate an S-function wrapper for your Real-Time Workshop Embedded
Coder code:

1 Open the Configuration Parameters dialog.

2 Select the Interface pane.

3 Select the Create Simulink (S-Function) block option, as shown in
this figure.

4 Configure the other code generation options as required.

5 To ensure that memory for the S-Function is initialized to zero, you should
deselect the following options in the Data Initialization subpane of the
Optimization pane:

• Remove root level I/O zero initialization

• Remove internal state zero initialization

• Use memset to initialize floats and doubles to 0.0

3-66

Automatic S-Function Wrapper Generation

(See also “Data Initialization Subpane” on page 3-50.)

6 Select the Real-Time Workshop pane and click the Build button.

7 When the build process completes, an untitled model window opens. This
model contains the generated S-Function block.

8 Save the new model.

9 The generated S-Function block is now ready to use with other blocks or
models in Simulink.

3-67

3 Code Generation Options and Optimizations

Exporting Function-Call Subsystems
Real-Time Workshop Embedded Coder provides code export capabilities that
you can use to

• Automatically generate code for

- A function-call subsystem that contains only blocks that support code
generation

- A virtual subsystem that contains only such subsystems and a few other
types of blocks

• Optionally generate an ERT S-function wrapper for the generated code

You can use these capabilities only if the subsystem and its interface to the
Simulink model conform to certain requirements and constraints, as described
in “Requirements for Exporting Function-Call Subsystems” on page 3-69. For
limitations that apply, see “Function-Call Subsystems Export Limitations”
on page 3-76.

Exported Subsystems Demo
To see a demo of exported function-call subsystems, type
rtwdemo_export_functions in the MATLAB Command Window.

Additional Information
See the following in the Simulink documentation for additional information
relating to exporting function-call subsystems:

• “Systems and Subsystems”

• “Signals”

• “Triggered Subsystems”

• “Function-Call Subsystems”

• “Writing S-Functions”.

3-68

Exporting Function-Call Subsystems

If you want to use Stateflow blocks to trigger exportable function-call
subsystems, you may also need information from the “Stateflow and Stateflow
Coder User’s Guide”.

Requirements for Exporting Function-Call Subsystems
To be exportable as code, a function-call subsystem, or a virtual subsystem
that contains such subsystems, must meet certain requirements. Most
requirements are similar for either type of export, but some apply only
to virtual subsystems. The requirements that affect all Simulink code
generation also apply.

For brevity, exported subsystem in this section means only an exported
function-call subsystem or an exported virtual subsystem that contains such
subsystems. The requirements listed do not necessarily apply to other types
of exported subsystems.

Requirements for All Exported Subsystems
These requirements apply to both exported function-call subsystems and
exported virtual subsystems that contain such subsystems.

Blocks Must Support Code Generation. All blocks within an exported
subsystem must support code generation. However, blocks outside the
subsystem need not support code generation unless they will be converted to
code in some other context.

Blocks Must Not Use Absolute Time. Certain blocks use absolute time.
Blocks that use absolute time are not supported in exported function-call
subsystems. For a complete list of such blocks, see “Blocks That Depend on
Absolute Time” in the Real-Time Workshop documentation.

Blocks Must Not Depend on Elapsed Time. Certain blocks, like the
Sine Wave block and Discrete Integrator block, depend on elapsed time. If
an exported function-call subsystem contains any blocks that depend on
elapsed time, the subsystem must specify periodic execution. See “Exporting
Function-Call Subsystems That Depend on Elapsed Time” on page 3-72 in the
Real-Time Workshop documentation.

3-69

3 Code Generation Options and Optimizations

Trigger Signals Require a Common Source. If more than one trigger
signal crosses the boundary of an exported system, all of the trigger signals
must be periodic and originate from the same function-call initiator.

Trigger Signals Must Be Scalar. A trigger signal that crosses the boundary
of an exported subsystem must be scalar. Input and output data signals that
do not act as triggers need not be scalar.

Data Signals Must Be Nonvirtual. A data signal that crosses the boundary
of an exported system cannot be a virtual bus, and cannot be implemented
as a Goto-From connection. Every data signal crossing the export boundary
must be scalar, muxed, or a nonvirtual bus.

Requirements for Exported Virtual Subsystems
These requirements apply only to exported virtual subsystems that contain
function-call subsystems.

Virtual Subsystem Must Use Only Permissible Blocks. The top level of
an exported virtual subsystem that contains function-call subsystem blocks
can contain only the following other types of blocks:

• Input and Output blocks (ports)

• Constant blocks (including blocks that resolve to constants, such as Add)

• Merge blocks

• Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal
Specification)

• Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether
or not they appear in a virtual subsystem. They apply only at the top level
of an exported virtual subsystem that contains one or more function-call
subsystems.

Constant Blocks Must Be Inlined. When a constant block appears at
the top level of an exported virtual subsystem, the containing model must
check Inline parameters on the Optimization pane of the Configuration
Parameters dialog box (or its equivalent in the Model Explorer).

3-70

Exporting Function-Call Subsystems

Constant Outputs Must Specify a Storage Class. When a constant
signal drives an output port of an exported virtual subsystem, the signal
must specify a storage class.

Techniques for Exporting Function-Call Subsystems
To export a function-call subsystem, or a virtual subsystem that contains
function-call subsystems,

1 Ensure that the subsystem to be exported satisfies the “Requirements for
Exporting Function-Call Subsystems” on page 3-69.

2 In the Configuration Parameters dialog box (or the equivalent Model
Explorer pane), in the Real-Time Workshop options:

a Specify an ERT code generation target such as ert.tlc.

b If you want an ERT S-function wrapper for the generated code, click the
Interface tab and check Create Simulink (S-function) block.

c Click OK or Apply.

3 Right-click the subsystem block and choose Real-Time Workshop >
Export Functions from the context menu.

The Build code for subsystem: Subsystem dialog box appears. This
dialog box is not specific to exporting function-call subsystems, and
generating code does not require entering information in the box.

4 Click Build.

The MATLAB Command Window displays messages similar to those for
any code generation sequence. Simulink generates code and places it in
the working directory.

If you checked Create Simulink (S-function) block in step 2b, Simulink
opens a new window that contains an S-function block that represents
the generated code. This block has the same size, shape, and connectors
as the original subsystem.

3-71

3 Code Generation Options and Optimizations

Code generation and optional block creation are now complete. You can test
and use the code and optional block as you could any generated ERT code
and S-function block.

Optimizing Exported Function-Call Subsystems
You can use Real-Time Workshop options to optimize the code generated for
a function-call subsystem or virtual block that contains such subsystems.
To obtain faster code,

• Specify a storage class for every input signal and output signal that crosses
the boundary of the subsystem.

• For each function-call subsystem to be exported (whether directly or within
a virtual subsystem):

a Right-click the subsystem and choose SubSystem Parameters from
the context menu.

b Set the Format of generated code to be Auto.

c Click OK or Apply.

Exporting Function-Call Subsystems That Depend on
Elapsed Time
Some blocks, such as the Sine Wave block (if sample-based) and the
Discrete-Time Integrator block, depend on elapsed time. See “Absolute and
Elapsed Time Computation” in the Real-Time Workshop documentation for
more information.

When a block that depends on elapsed time exists in a function-call subsystem,
the subsystem cannot be exported unless it specifies periodic execution. To
provide the necessary specification,

1 Right-click the trigger port block in the function-call subsystem and choose
TriggerPort Parameters from the context menu.

2 Specify periodic in the Sample time type field.

3 Set the Sample time to the same granularity specified (directly or by
inheritance) in the function-call initiator.

3-72

Exporting Function-Call Subsystems

4 Click OK or Apply.

Function-Call Subsystem Export Example
The next figure shows the top level of a model that uses a Stateflow chart
named Chart to input two function-call trigger signals (denoted by dash-dot
lines) to a virtual subsystem named Subsystem.

The next figure shows the contents of Subsystem in the previous figure. The
subsystem contains two function-call subsystems, each driven by one of the
signals input from the top level.

In the preceding model, the Stateflow chart can assert either of two scalar
signals, Toggle and Select.

3-73

3 Code Generation Options and Optimizations

• Asserting Toggle toggles the Boolean state of the function-call subsystem
Toggle Output Subsystem.

• Asserting Select causes the function-call subsystem Select Input
Subsystem to assign the value of DataIn1 or DataIn2 to its output signal.
The value assigned depends on the current state of Toggle Output
Subsystem.

The following generated code implements the subsystem named Subsystem.
The code is typical for virtual subsystems that contain function-call
subsystems. It specifies an initialization function and a function for each
contained subsystem, and would also include functions to enable and disable
subsystems if applicable.

#include "Subsystem.h"

#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIn1; /* '<Root>/In3' */

real_T DataIn2; /* '<Root>/In4' */

real_T DataOut; /* '<S4>/Switch' */

boolean_T SelectorSignal; /* '<S5>/Logical Operator' */

/* Exported block states */

boolean_T SelectorState; /* '<S5>/Unit Delay' */

/* Real-time model */

RT_MODEL_Subsystem Subsystem_M_;

RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle_Init(void)

{

/* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

/* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */

SelectorState = Subsystem_P.UnitDelay_X0;

}

/* Output and update for exported function: Toggle */

3-74

Exporting Function-Call Subsystems

void Toggle(void)

{

/* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

/* Logic: '<S5>/Logical Operator' incorporates:

* UnitDelay: '<S5>/Unit Delay'

*/

SelectorSignal = !SelectorState;

/* Update for UnitDelay: '<S5>/Unit Delay' */

SelectorState = SelectorSignal;

}

/* Output and update for exported function: Select */

void Select(void)

{

/* Output and update for function-call system: '<S1>/Select Input Subsystem' */

/* Switch: '<S4>/Switch' incorporates:

* Inport: '<Root>/In3'

* Inport: '<Root>/In4'

*/

if(SelectorSignal) {

DataOut = DataIn1;

} else {

DataOut = DataIn2;

}

}

/* Model initialize function */

void Subsystem_initialize(void)

{

/* initialize error status */

rtmSetErrorStatus(Subsystem_M, (const char_T *)0);

/* block I/O */

3-75

3 Code Generation Options and Optimizations

/* exported global signals */

DataOut = 0.0;

SelectorSignal = FALSE;

/* states (dwork) */

/* exported global states */

SelectorState = FALSE;

/* external inputs */

DataIn1 = 0.0;

DataIn2 = 0.0;

Toggle_Init();

}

/* Model terminate function */

void Subsystem_terminate(void)

{

/* (no terminate code required) */

}

Function-Call Subsystems Export Limitations
The function-call subsystem export capabilities have the following limitations:

• Real-Time Workshop options do not control the names of the files containing
the generated code. All such filenames begin with the name of the exported
subsystem. Each filename is suffixed as appropriate to the file.

• Real-Time Workshop options do not control the names of top-level functions
in the generated code. Each function name reflects the name of the signal
that triggers the function, or for an unnamed signal, the block from which
the signal originates.

• This release cannot export reusable code for a function-call subsystem.
Checking Configuration Parameters > Real-Time Workshop >
Interface > Generate reusable code has no effect on the generated
code for the subsystem.

3-76

Exporting Function-Call Subsystems

• This release supports code generation for ERT generated S-function blocks
if the block does not have function-call input ports, but the ERT S-function
block will appear as a noninlined S-function in the generated code.

• This release supports an ERT generated S-function block in accelerator
mode only if its function-call initiator is noninlined in accelerator mode.
Examples of noninlined initiators include all Stateflow charts.

• The ERT S-function wrapper must be driven by a Level-2 S-function
initiator block, such as a Stateflow chart or the built-in Function-call
Generator block.

• An asynchronous (sample-time) function-call system can be exported,
but this release does not support the ERT S-function wrapper for an
asynchronous system.

• This release does not support code generation for an ERT generated
S-function block if the block was generated as a wrapper for exported
function calls.

• The output port of an ERT generated S-function block cannot be merged
using the Merge block.

• This release does not support MAT-file logging for exported function calls.
Any specification that enables MAT-file logging is ignored.

• The use of the TLC function LibIsFirstInit is deprecated for exported
function calls.

• The model_initialize function generated in the code for an exported
function-call subsystem never includes a firstTime argument, regardless
of the value of the model configuration parameter IncludeERTFirstTime.
Thus, you cannot call the function at a time greater than start time, for
example, to reset block states.

3-77

3 Code Generation Options and Optimizations

Nonvirtual Subsystem Modular Function Code Generation
Real-Time Workshop Embedded Coder provides a subsystem option,
Function with separate data, that allows you to generate modular
function code for nonvirtual subsystems, including atomic subsystems and
conditionally executed subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem’s internal data from the data of its parent Simulink model. This
can make it difficult to trace and test the code, particularly for nonreusable
subsystems. Also, in large models containing nonvirtual subsystems, data
structures can become large and potentially difficult to compile.

The Subsystem Parameters dialog option Function with separate data
allows you to generate subsystem function code in which the internal data for
a nonvirtual subsystem is separated from its parent model and is owned by
the subsystem. As a result, the generated code for the subsystem is easier
to trace and test. The data separation also tends to reduce the size of data
structures throughout the model.

Note Selecting the Function with separate data option for a nonvirtual
subsystem has no semantic effect on the parent Simulink model.

To be able to use this option,

• Your Simulink model must use an ERT-based system target file (requires a
license for Real-Time Workshop Embedded Coder).

• Your subsystem must be configured to be atomic or conditionally executed
(for more information, see “Systems and Subsystems” in the Simulink
documentation).

• Your subsystem must use the Function setting for the Real-Time
Workshop system code parameter.

To configure your subsystem for generating modular function code, you invoke
the Subsystem Parameters dialog and make a series of selections to display
and enable the Function with separate data option. See “Configuring
Nonvirtual Subsystems for Generating Modular Function Code” on page 3-79

3-78

Nonvirtual Subsystem Modular Function Code Generation

and “Examples of Modular Function Code for Nonvirtual Subsystems” on
page 3-83 for details. For limitations that apply, see “Nonvirtual Subsystem
Modular Function Code Limitations” on page 3-89.

For more information about generating code for atomic subsystems, see the
sections “Nonvirtual Subsystem Code Generation” and “Generating Code and
Executables from Subsystems” in the Real-Time Workshop documentation.

Configuring Nonvirtual Subsystems for Generating
Modular Function Code
This section summarizes the steps needed to configure a subsystem in a
Simulink model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an
ERT-based system target file (see the System target file parameter on
the Real-Time Workshop pane of the Configuration Parameters dialog
or Model Explorer).

2 In your Simulink model, select the subsystem for which you want to
generate modular function code and launch the Subsystem Parameters
dialog (for example, right-click the subsystem and select SubSystem
Parameters). The dialog box for an atomic subsystem is shown below. (In
the dialog box for a conditionally executed subsystem, the dialog option
Treat as atomic unit is greyed out, and you can skip Step 3.)

3-79

3 Code Generation Options and Optimizations

3 If the Subsystem Parameters dialog option Treat as atomic unit is
available for selection but not selected, the subsystem is neither atomic nor
conditionally executed. Select the option Treat as atomic unit. After you
make this selection, the Real-Time Workshop system code parameter
is displayed.

4 For the Real-Time Workshop system code parameter, select the value
Function. After you make this selection, the Function with separate
data option is displayed.

3-80

Nonvirtual Subsystem Modular Function Code Generation

Note Before you generate nonvirtual subsystem function code with
the Function with separate data option selected, you might want to
generate function code with the option deselected and save the generated
function .c and .h files in a separate directory for later comparison.

3-81

3 Code Generation Options and Optimizations

5 Select the Function with separate data option. After you make this
selection, additional configuration parameters are displayed.

Note To control the naming of the subsystem function and the subsystem
files in the generated code, you can modify the subsystem parameters
Real-Time Workshop function name options and Real-Time
Workshop file name options.

6 To save your subsystem parameter settings and exit the dialog, click OK.

3-82

Nonvirtual Subsystem Modular Function Code Generation

This completes the subsystem configuration needed to generate modular
function code. You can now generate the code for the subsystem and examine
the generated files, including the function .c and .h files named according to
your subsystem parameter specifications. For more information on generating
code for nonvirtual subsystems, see “Nonvirtual Subsystem Code Generation”
in the Real-Time Workshop documentation. For examples of generated
subsystem function code, see “Examples of Modular Function Code for
Nonvirtual Subsystems” on page 3-83.

Examples of Modular Function Code for Nonvirtual
Subsystems
To illustrate the effect of selecting the Function with separate data
option for a nonvirtual subsystem, the following procedure generates atomic
subsystem function code with and without the option selected and compares
the results.

1 Open MATLAB and launch rtwdemo_atomic.mdl using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

2 Double-click the SS1 subsystem and examine the contents. (You can close
the subsystem window when you are finished.)

3-83

3 Code Generation Options and Optimizations

3 Use the Configuration Parameters dialog or Model Explorer to change
the model’s System target file from GRT to ERT. For example, from the
Simulink window, select Simulation > Configuration Parameters,
select the Real-Time Workshop pane, select System target file ert.tlc,
and click OK twice to confirm the change.

4 Create a variant of rtwdemo_atomic.mdl that illustrates function code
without data separation.

a In the Simulink view of rtwdemo_atomic.mdl, right-click the SS1
subsystem and select Subsystem Parameters. In the Subsystem
Parameters dialog, verify that

• Treat as atomic unit is checked

• User specified is selected as the value for the Real-Time
Workshop function name options parameter

• myfun is specified as the value for the Real-Time Workshop
function name parameter

b In the Subsystem Parameters dialog,

i Select the value Function for the Real-Time Workshop system
code parameter. After this selection, additional parameters and
options will appear.

ii Select the value Use function name for the Real-Time Workshop
file name parameter. This selection is optional but simplifies the later
task of code comparison by causing the atomic subsystem function
code to be generated into the files myfun.c and myfun.h.

3-84

Nonvirtual Subsystem Modular Function Code Generation

Do not select the option Function with separate data. Click Apply to
apply the changes and click OK to exit the dialog.

c Save this model variant to a personal work directory, for example,
d:/atomic/rtwdemo_atomic1.mdl.

5 Create a variant of rtwdemo_atomic.mdl that illustrates function code
with data separation.

a In the Simulink view of rtwdemo_atomic1.mdl (or rtwdemo_atomic.mdl
with step 3 reapplied), right-click the SS1 subsystem and select
Subsystem Parameters. In the Subsystem Parameters dialog, verify
that

• Treat as atomic unit is checked

• Function is selected for the Real-Time Workshop system code
parameter

• User specified is selected as the value for the Real-Time
Workshop function name options parameter

• myfun is specified as the value for the Real-Time Workshop
function name parameter

• Use function name is selected for the Real-Time Workshop file
name options parameter

b In the Subsystem Parameters dialog, select the option Function with
separate data. Click Apply to apply the change and click OK to exit
the dialog.

c Save this model variant, using a different name than the first variant, to a
personal work directory, for example, d:/atomic/rtwdemo_atomic2.mdl.

6 Generate code for each model, d:/atomic/rtwdemo_atomic1.mdl and
d:/atomic/rtwdemo_atomic2.mdl.

7 In the generated code directories, compare the model.c/.h and myfun.c/.h
files generated for the two models. (In this example, there are no significant
differences in the generated variants of ert_main.c, model_private.h,
model_types.h, or rtwtypes.h.)

3-85

3 Code Generation Options and Optimizations

H File Differences for Nonvirtual Subsystem Function Data
Separation
The differences between the H files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl help illustrate the effect of selecting the Function
with separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem
data to be generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */
typedef struct {

real_T Integrator; /* '<S1>/Integrator' */
} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} rtDW_myfun;

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to
the model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */
typedef struct {
...

real_T Integrator; /* '<S1>/Integrator' */
} BlockIO_rtwdemo_atomic1;

/* Block states (auto storage) for system '<Root>' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} D_Work_rtwdemo_atomic1;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:

/* Extern declarations of internal data for 'system '<Root>/SS1'' */

extern rtB_myfun rtwdemo_atomic2_myfunB;

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

3-86

Nonvirtual Subsystem Modular Function Code Generation

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.h:

/* Block signals (auto storage) */
extern BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
extern D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function Data
Separation
The differences between the C files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl illustrate the key effects of selecting the Function
with separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c
file for rtwdemo_atomic2:

void myfun_initialize(void) {
{

((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;
}
rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model
initialize function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(boolean_T firstTime)
{
...

/* Initialize subsystem data */
myfun_initialize();

3-87

3 Code Generation Options and Optimizations

}

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the
model initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(boolean_T firstTime)
{
...

/* block I/O */
{

...
((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;

}

/* states (dwork) */

rtwdemo_atomic1_DWork.Integrator_DSTATE = 0.0;
...
}

2 Selecting Function with separate data generates the following
declarations in the myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */
rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains
model-level declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.c:

/* Block signals (auto storage) */
BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

3-88

Nonvirtual Subsystem Modular Function Code Generation

3 Selecting Function with separate data generates identifier naming that
reflects the subsystem orientation of data items. Notice the references to
subsystem data in subsystem functions such as myfun and myfun_update
or in the model’s model_step function. For example, compare this code
from myfun for rtwdemo_atomic2

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomic1.

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_DSTATE;

Nonvirtual Subsystem Modular Function Code
Limitations
The nonvirtual subsystem option Function with separate data has the
following limitations:

• The Function with separate data option is available only in ERT-based
Simulink models (requires a license for Real-Time Workshop Embedded
Coder).

• The nonvirtual subsystem to which the option is applied cannot have
multiple sample times or continuous sample times; that is, the subsystem
must be single-rate with a discrete sample time.

• The nonvirtual subsystem cannot contain continuous states.

• The nonvirtual subsystem cannot output function call signals.

• The nonvirtual subsystem cannot contain non-inlined S-functions.

• The generated files for the nonvirtual subsystem will reference model-wide
header files, such as model.h and model_private.h.

• The Function with separate data option is incompatible with the
GRT compatible call interface option, located on the Real-Time
Workshop/Interface pane of the Configuration Parameters dialog or
Model Explorer. Selecting both will generate an error.

3-89

3 Code Generation Options and Optimizations

• The Function with separate data option is incompatible with the
Generate reusable code option (Real-Time Workshop/Interface pane).
Selecting both will generate an error.

• Although the model_initialize function generated for a model containing
a nonvirtual subsystem that uses the Function with separate data
option may have a firstTime argument, the argument is not used.
Thus, you cannot call the function at a time greater than start time, for
example, to reset block states. To suppress inclusion of the firstTime
flag in the function definition, set the model configuration parameter
IncludeERTFirstTime to off.

3-90

4

Custom Storage Classes

Introduction to Custom Storage
Classes (p. 4-3)

Overview of how Real-Time
Workshop Embedded Coder’s custom
storage classes (CSCs) extend your
control over the representation of
data in an embedded algorithm.

Custom Storage Classes and
Simulink Data Objects (p. 4-5)

Relationship between custom storage
classes and Simulink data class
packages and objects; predefined
custom storage classes for signal and
parameter objects; how to set custom
storage class properties of data
objects for use in code generation;
code generation example using
signal objects with custom storage
classes.

Designing Custom Storage Classes
(p. 4-15)

Using the Custom Storage Class
Designer to implement your own
custom storage classes.

Creating Packages with CSC
Definitions (p. 4-30)

Using the Simulink Data Class
Designer to create data object
packages associated with custom
storage classes.

Defining Advanced Custom Storage
Class Types (p. 4-34)

Defining custom storage classes from
scratch, including associated TLC
code generation implementation;
using advanced mode of the Custom
Storage Class Designer.

4 Custom Storage Classes

GetSet Custom Storage Class for
Data Store Memory (p. 4-38)

A special storage class for use with
Data Store Memory blocks.

Requirements and Restrictions for
Use of CSCs (p. 4-41)

Setting related options correctly for
code generation with CSCs; general
restrictions; restrictions that apply
to the use of CSC in models that use
the Model Referencing feature.

Older Custom Storage Classes (Prior
to Release 14) (p. 4-43)

Compatibility information on custom
storage classes provided in versions
of Real-Time Workshop Embedded
Coder prior to Version 4.0 (MATLAB
Release 14).

4-2

Introduction to Custom Storage Classes

Introduction to Custom Storage Classes
In Real-Time Workshop, the storage class specification of a signal, tunable
parameter, block state, or data object specifies how that entity is declared,
stored, and represented in generated code.

Note that in the context of Real-Time Workshop, the term “storage class” is not
synonymous with the term “storage class specifier”, as used in the C language.

Real-Time Workshop defines built-in storage classes for use with all targets.
Examples of built-in storage classes are Auto, ExportedGlobal, and
ImportedExtern. These storage classes provide limited control over the form
of the code generated for references to the data. For example, data of storage
class Auto is typically declared and accessed as an element of a structure,
while data of storage class ExportedGlobal is declared and accessed as
unstructured global variables. Built-in storage classes are discussed in detail
in the “Working with Data Structures” section of the Real-Time Workshop
documentation.

The built-in storage classes are suitable for many applications, but embedded
system designers often require greater control over the representation of
data. For example, you may need to

• Define structures for storage of parameter or signal data.

• Conserve memory by storing Boolean data in bit fields.

• Integrate generated code with legacy software whose interfaces cannot
be modified.

• Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

Real-Time Workshop Embedded Coder’s custom storage classes (CSCs)
provide extended control over the constructs required to represent data in an
embedded algorithm. CSCs extend the built-in storage classes provided by
Real-Time Workshop. Real-Time Workshop Embedded Coder provides

• A set of ready-to-use CSCs. These CSCs are designed to be useful in code
generation for embedded systems development. CSC functionality is

4-3

4 Custom Storage Classes

integrated into the Simulink.Signal and Simulink.Parameter classes;
you do not need to use special object classes to generate code with CSCs.

If you are unfamiliar with the Simulink.Signal and Simulink.Parameter
classes and objects, you should read the “Simulink Data Objects and Code
Generation” section of the Real-Time Workshop documentation.

• The Custom Storage Class Designer (cscdesigner) tool. This tool lets
you define additional CSCs that are tailored to your code generation
requirements. The Custom Storage Class Designer provides a graphical
user interface that lets you implement CSCs quickly and easily. You
can use your CSCs in code generation immediately, without any Target
Language Compiler (TLC) or other programming.

• The Simulink Data Class Designer. This chapter describes how to use
the Simulink Data Class Designer to create a data object package and
associate your own custom CSC definitions with classes contained in the
package. For a general description of the Simulink Data Class Designer,
see the Simulink documentation.

4-4

Custom Storage Classes and Simulink Data Objects

Custom Storage Classes and Simulink Data Objects
CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter
and Simulink.Signal classes). The custom storage classes associated with
a package are defined by a CSC registration file.

A CSC registration file is provided for the Simulink package. This
registration file provides predefined CSCs for use with the Simulink.Signal
and Simulink.Parameter classes (and with subclasses derived from these
classes). The predefined CSCs are sufficient for a wide variety of applications.

If you use only predefined CSCs, you do not need to be concerned with CSC
registration files. If you want to customize or extend the predefined CSCs,
or create CSCs for use with data class packages other than the Simulink
package, you can by using the Custom Storage Class Designer. The Custom
Storage Class Designer is described in “Designing Custom Storage Classes”
on page 4-15.

This section discusses the following topics related to predefined CSCs and
their use in code generation:

• “Predefined CSCs” on page 4-6 discusses the ready-to-use CSCs provided
for parameter and signal objects.

• “Setting the Custom Storage Class Properties” on page 4-9 demonstrates
how to configure the CSC-related properties of parameter and signal
objects.

• “Generating Code with CSCs” on page 4-10 guides you through the steps
required to generate code using CSCs, using signal objects as an example.

4-5

4 Custom Storage Classes

Predefined CSCs
The RTWInfo properties of parameter and signal objects are used by Real-Time
Workshop during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents signals and parameters.

The RTWInfo field of the Simulink.Signal and Simulink.Parameter classes
(and of any subclasses derived from these classes) contains two properties
that support use of CSCs in code generation:

• CustomStorageClass: To assign a custom storage class to a signal or
parameter object, you set the RTWInfo.CustomStorageClass property to
one of the available CSC names and RTWInfo.StorageClass to Custom.
Summary of Predefined Simulink CSCs for Signal and Parameter Objects
on page 4-7 lists the predefined set of CSCs provided by Real-Time
Workshop Embedded Coder.

• CustomAttributes: Some CSCs have instance-specific properties
that define attributes of individual objects (or instances) of that
class. The RTWInfo.CustomAttributes property lets you define these
attributes. For example, you can pack signal objects of class Struct
into different data structures in the generated code by setting the
RTWInfo.CustomAttributes.StructName property for each object.
Summary of Instance-Specific Properties for CSCs on page 4-8 lists
instance-specific properties for the predefined set of CSCs provided by
Real-Time Workshop Embedded Coder.

Note that some CSCs are valid for parameter objects but not signal objects
and vice versa (even though they are not defined in predefined CSCs). For
example, you can assign the storage class Const to a parameter object. This
storage class is not valid for signals, because, in general, signal data is not
constant. Summary of Predefined Simulink CSCs for Signal and Parameter
Objects on page 4-7 indicates whether each class is valid for parameter or
signal objects.

4-6

Custom Storage Classes and Simulink Data Objects

Summary of Predefined Simulink CSCs for Signal and Parameter Objects

Class Name
(Enumerated)

Available for
Signals

Available for
Parameters Purpose

BitField Y Y Generate a struct declaration
that embeds Boolean data in
named bit fields.

Const N Y Generate a constant
declaration with the const
type qualifier.

ConstVolatile N Y Generate declaration of volatile
constant with the const
volatile type qualifier.

Default Y Y Default is a placeholder
CSC that the code
generator assigns to the
RTWInfo.CustomStorageClass
property of signal and
parameter objects when
they are created. You cannot
edit the default CSC definition.

Define N Y Generate #define directive.

ExportToFile Y Y Generate header (.h) file, with
user-specified name, containing
global variable declarations.

ImportFromFile Y Y Generate directives to include
predefined header files
containing global variable
declarations.

Struct Y Y Generate a struct declaration
encapsulating parameter or
signal object data.

Volatile Y Y Use volatile type qualifier in
declaration.

4-7

4 Custom Storage Classes

Summary of Instance-Specific Properties for CSCs

Class Name
(Enumerated) Instance-Specific Property Purpose

BitField CustomAttributes.StructName Name of the bitfield struct into
which the code generator packs the
object’s Boolean data.

ExportToFile CustomAttributes.HeaderFile Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

ImportFromFile CustomAttributes.HeaderFile Name of header (.h) file containing
global variable declarations the code
generator imports for the object.

Struct CustomAttributes.StructName Name of the struct into which the
code generator packs the object’s
data.

4-8

Custom Storage Classes and Simulink Data Objects

Setting the Custom Storage Class Properties
You can set the CustomStorageClass and CustomAttributes properties (if
applicable) of signal and parameter objects by using the data object dialog.
This dialog appears in the right pane of the Model Explorer. Alternatively,
you can launch the dialog independently by right-clicking the relevant
object in center pane of the Model Explorer. The following figure shows a
Model Explorer properties view of a signal object, aa. The Storage class
menu sets the RTWInfo.CustomStorageClass property for the object.
In this case the Storage class field specifies the custom storage class
Struct. The Struct storage class has the instance-specific property Struct
name (RTWInfo.CustomAttributes.StructName). This property is set to
mySignals.

You can also set these properties with MATLAB commands, for example:

aa = Simulink.Signal;
aa.RTWInfo.StorageClass = 'Custom';
aa.RTWInfo.CustomStorageClass = 'Struct';
aa.RTWInfo.CustomAttributes.StructName = 'mySignals';

4-9

4 Custom Storage Classes

When setting CSC-related RTWInfo properties with MATLAB commands,
make sure that the RTWInfo.StorageClass property is set to Custom. If
you set this property to another value, the custom storage properties are
ignored. If you set RTWInfo.customStorageClass without first setting
RTWinfo.StorageClass to Custom, the code generator displays a warning
at the MATLAB command line. If you configure these properties with the
Simulink Model Explorer, RTWInfo.StorageClass is automatically set to
the correct value.

In the generated code, storage for the signal aa is allocated within a struct
named mySignals. This is demonstrated in the next section, “Generating
Code with CSCs” on page 4-10.

Generating Code with CSCs
This section presents a simple example of code generation with CSCs, based
on the model shown in this figure.

This example uses signal objects, but the procedure for generating code from
parameter objects (or from any class of objects that supports CSCs) is almost
the same. (If you plan to use CSCs with parameter objects, see “Requirements
and Restrictions for Use of CSCs” on page 4-41 for the correct use of the
Inline parameters option.)

The model contains three named signals (aa, bb, and cc). Using the
predefined Struct CSC, this example packs these signals into a named
struct, mySignals, in the generated code. The struct declaration is then
exported to externally written code.

To generate the struct, you must instantiate Simulink.Signal objects
that are associated (by name) with the signals in the model, and assign the

4-10

Custom Storage Classes and Simulink Data Objects

appropriate storage class to the Simulink.Signal objects. In this case, the
code generator uses the Struct custom storage class. After these objects are
configured, code generation can proceed.

Set Model Properties
Before configuring the signal objects, make sure you deselect the Ignore
custom storage classes option in the Real-Time Workshop pane of the
active configuration set.

Instantiate Signal Objects
The next step is to instantiate signal objects. You can do this with MATLAB
commands as shown below.

aa = Simulink.Signal
bb = Simulink.Signal
cc = Simulink.Signal

Alternatively, you can create the signal objects in the Simulink Model Explorer
by clicking Add Simulink Signal or selecting Add Simulink.Signal from
the Add menu.

Assign Storage Class and Instance-Specific Properties. The next step is
to assign the Struct custom storage class to the signal objects. The easiest
way to do this is to use the object dialog in the Model Explorer to set the
RTWInfo attributes of the signal objects. The following figure illustrates how
to set the Storage class and Struct name attributes for the signal object aa.

Signal objects bb and cc (not shown) are configured identically.

4-11

4 Custom Storage Classes

The association between identically named model signals and signal objects
is formed automatically. The symbols aa, bb, and cc resolve to the signal
objects aa, bb, and cc, which have custom storage class Struct. You can
display the storage class of the signals in the block diagram by selecting
Port/Signal Display > Storage Class from the Simulink Format menu.
The figure below shows the block diagram with signal data types and signal
storage classes displayed.

4-12

Custom Storage Classes and Simulink Data Objects

Generate Code. The model is now configured to generate the desired data
structure for the signals. After code generation, the relevant definitions and
declarations are located in three files:

• model_types.h defines the following struct type for storage of the three
signals.

typedef struct MySignals_tag {
boolean_T cc;
uint8_T bb;
uint8_T aa;

} mySignals_type;

• model.c or .cpp declares the variable mySignals, as specified in the object’s
instance-specific StructName attribute. The variable is referenced in the
code generated for the Switch block.

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {
/* cc */
FALSE,
/* bb */
0,
/* aa */

0
};
...
/* Switch: '<Root>/Switch1' */

if(mySignals.cc) {
rtb_Switch1 = mySignals.aa;

} else {
rtb_Switch1 = mySignals.bb;

}

4-13

4 Custom Storage Classes

• model.h exports the mySignals Struct variable.

/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

This example shows the use of the Struct class in its default configuration.
Using the Custom Storage Class Designer, you can customize the Struct
class or any of the other predefined CSCs and tailor code generation to your
own requirements.

4-14

Designing Custom Storage Classes

Designing Custom Storage Classes
The Custom Storage Class Designer (cscdesigner) is a tool for creating and
managing CSCs. The Custom Storage Class Designer lets you

• Load existing CSCs and view and edit their definitions

• Create new CSCs, or copy and modify existing CSC definitions

• Control placement of data objects in memory (for example, in RAM, ROM,
and flash memory sections)

• Preview pseudocode generated from CSC definitions

• Verify the correctness and consistency of CSC definitions

• Save CSC definitions

Custom Storage Class Designer Overview
This section provides a quick introduction to the Custom Storage Class
Designer, with references to the detailed descriptions located in the following
section, “Using the Custom Storage Class Designer” on page 4-17.

To open the Custom Storage Class Designer, type the following command at
the MATLAB prompt:

cscdesigner

When first opened, cscdesigner scans all data class packages on the
MATLAB path to detect packages that have a CSC registration file. A
message window is displayed while scanning proceeds.

When the scan is complete, the Custom Storage Class Designer window opens
(see Custom Storage Class Designer Window on page 4-16).

4-15

4 Custom Storage Classes

Custom Storage Class Designer Window

The window is divided into several panels:

• Select package panel: Lets you select from a menu of data class packages
that have CSC definitions associated with them. See “Selecting a Data
Class Package” on page 4-17 for details.

• Custom Storage Class / Memory Section properties panel: Lets you
select, view, edit, copy, verify, and perform other operations on CSC
definitions or memory section definitions. The common controls in the
Custom Storage Class / Memory Section properties panel are described
in “Selecting and Maintaining CSC and Memory Section Definitions” on
page 4-18.

4-16

Designing Custom Storage Classes

When the Custom Storage Class tab is selected, you can select a CSC
from a list, and edit its properties. See “Editing Properties of CSCs” on
page 4-19 for details.

When the Memory Section tab is selected, you can select a memory section
definition from a list, and edit its properties. Each CSC has an associated
memory section definition. A memory section definition is a named
collection of properties related to placement of an object in memory. The
memory section properties let you specify storage directives for data objects.
For example, you can specify const declarations, or compiler-specific
#pragma statements for allocation of storage in ROM or flash memory
sections. See “Editing Memory Section Definitions” on page 4-26 for details.

• Filename panel: Displays the filename and location of the current CSC
registration file, and lets you save your CSC definition to that file. See
“Saving Your Definitions” on page 4-29 for details.

• Pseudocode preview panel: Displays a preview of code that is generated
from objects of the given class. The preview is pseudocode, since the
actual symbolic representation of data objects is not available until code
generation time. See “Previewing Generated Code” on page 4-28 for details.

• Validation result panel: Displays any errors encountered when the
currently selected CSC definition is validated. See “Validating CSC
Definitions” on page 4-29 for details.

Using the Custom Storage Class Designer
This section provides a detailed description of the Custom Storage Class
Designer window and each of its functions.

Selecting a Data Class Package
A CSC definition is uniquely associated with a Simulink data class package.
The link between a CSC and a package is formed when a CSC registration
file (csc_registration.m) is located in the package directory. You never
need to search for or edit a CSC registration file directly; the Custom Storage
Class Designer locates all available CSC registration files and displays the
associated package names in the Select package panel.

4-17

4 Custom Storage Classes

The Select package panel contains a menu of names of all detected data
class packages that have a CSC registration file. At least one such package,
the Simulink package, is always present.

When you select a package, the CSCs and memory section definitions
belonging to the package are loaded into memory and their names are
displayed in the scrolling list in the Custom storage class panel. The name
and location of the CSC registration file for the package is displayed in the
Filename panel.

Selecting and Maintaining CSC and Memory Section Definitions
The Custom Storage Class / Memory Section panel lets you select, view,
and edit CSC or memory section definitions. In the picture below, the Custom
Storage Class tab is selected.

The list at the top of the panel displays the definitions for the currently
selected package. To select a definition for viewing and editing, click on the
desired list entry.

4-18

Designing Custom Storage Classes

The properties of the selected definition are displayed in the area below the
list. The number and type of properties vary for different types of CSC and
memory section definitions. See “Editing Properties of CSCs” on page 4-19 for
specific information about the properties of the predefined CSCs. See “Editing
Memory Section Definitions” on page 4-26 for specific information about the
properties of the predefined memory section definitions.

The buttons to the right of the list perform the following functions:

• New: Creates a new CSC definition with default values.

• Copy: Creates a copy of the selected definition. Copies are given a default
name by the convention

definition_name_n

where definition_name is the name of the original definition, and n is an
integer indicating successive copy numbers (for example: BitField_1,
BitField_2, ...)

• Up: Moves the selected definition one position up in the list.

• Down: Moves the selected definition one position down in the list

• Remove: Removes the selected definition from the list.

• Validate: Performs a consistency check on the currently selected definition.
Errors are reported in the Validation result panel.

Editing Properties of CSCs
To view and edit the properties of a CSC, click on the Custom Storage Class
tab in the Custom Storage Class / Memory Section panel. Then, select
a CSC from the Custom storage class definition list. The CSC properties
are divided into several categories, selected by tabs. The number and type
of tabs and properties depend on the selected class and in some cases on the
property values themselves.

As you change property values, the effect upon the generated code is
immediately displayed in the Pseudocode preview panel. In most cases,
you can define your CSCs quickly and easily by selecting the Pseudocode
preview panel and using the Validate button frequently.

4-19

4 Custom Storage Classes

The categories and corresponding tabs are as follows:

General. Properties in the General category are common to all CSCs. These
properties are shown in the following figure.

Properties in the General category are:

• Name: Class name (displayed in Custom storage class list).

• Type: If Unstructured is selected, objects of this class generate
unstructured storage declarations (for example, scalar or array variables),
for example:

datatype dataname[dimension];

If FlatStructure is selected, objects of this class are stored as members
of a struct. A Structure Attributes tab is also displayed, allowing you
to specify additional properties such as the struct name (see “Structure
Attributes” on page 4-23).

Note Certain data layouts (for example, nested structures) cannot be
generated using the standard Unstructured and FlatStructure custom
storage class types. If you want to generate other types of data you can
create a new custom storage class from scratch by writing the necessary
TLC code. See “Defining Advanced Custom Storage Class Types” on page
4-34 for more information.

• For parameters and For signals: These options let you enable a CSC
for use with only certain classes of data objects. For example, it does not
make sense to assign storage class Const to a Simulink.Signal object.

4-20

Designing Custom Storage Classes

Accordingly, the For signals option for the Const class is deselected, while
the For parameters is selected.

• Memory section: This menu selects one of the memory section definitions
defined in the Memory Section panel. See “Editing Memory Section
Definitions” on page 4-26.

• Data scope: Controls the scope of symbols generated for data objects of
this CSC.

- Auto: Symbol scope is determined internally by Real-Time Workshop. If
possible, symbols have File scope. Otherwise, they have Exported scope.

- Exported: Symbol is exported to external code with either model.h
(default), or by the header file specified by the Header File field (see
below).

- Imported: Symbol is imported from external code with the header file
specified under the Header File tab (see below). If you do not specify a
header file, an extern directive is generated in model_private.h.

Note that for imported data if the Data initialization field (see below)
specifies the Macro option, a header file must be specified.

- File: Symbol has scope within the file that defines it. File scope requires
that the symbol is used in a single file. If the same symbol is referenced
in multiple files, an error occurs at code generation time.

- Instance specific: Symbol scope is defined by the Data scope
property of individual data objects.

• Data initialization: This field controls how storage is initialized in
generated code. Select one of

- None: No initialization code is generated.

- Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

- Dynamic: variable storage is initialized at runtime, in the
model_initialize function.

- Macro: A macro definition of the following form is generated:

#define data numeric_value

4-21

4 Custom Storage Classes

The Macro initialization option is available only for use with
unstructured parameters. In other words, it is not available when the
class is configured for generation of structured data, or for signals.

- Instance specific: Specify one of the above initialization options when
configuring each instance of the object.

• Data access: This field is enabled when Data scope is set to Imported.
This field controls whether or not an imported symbol is declared as a
pointer. Select either

- Direct: Symbol is declared as a simple variable, such as

extern myType myVariable;

- Pointer: Symbol is declared as a pointer variable, such as

extern myType *myVariable;

• Header file: If Specify is selected, an edit field is displayed to the right
of this property. This lets you specify a default header file for exported or
imported storage declarations. Specify the full filename, including the
filename extension (such as .h) and the desired quote or bracket delimiters.

If Instance specific is selected, objects of this class have the
RTWInfo.CustomAttributes.HeaderFile property. This property allows
you to define the name of the name of the header file that contains exported
or imported variable declarations and definitions for each object of the class.

The Header File specification interacts with the Data scope and Data
initialization properties as follows:

- If the Data scope of the class is set to Imported, and Data
initialization is set to Macro, you must specify a header file. A
#include directive for the header file is generated.

- If the Data scope of the class is set to Exported, specifying a header
file is optional. If you specify a header file, the custom storage class
generates a header file containing the storage declarations to be
exported. Otherwise, the storage declarations are exported with model.h.

4-22

Designing Custom Storage Classes

Comments. The Comments panel lets you specify comments to be generated
with definitions and declarations.

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify
a new line.

Properties in the Comments panel are as follows:

• Comment rules: if Specify is selected, edit fields allowing you to enter
comments are displayed. If Default is selected, comments are generated
under control of Real-Time Workshop.

• Type comment: The comment entered in this field precedes the typedef
or struct definition for structured data.

• Declaration comment: Comment that precedes the storage declaration.

• Definition comment: Comment that precedes the storage definition.

Structure Attributes. The Structure Attributes panel gives you detailed
control over code generation for structs (including bitfields). The Structure
Attributes tab is displayed for CSCs whose Type parameter is set to
FlatStructure. The following figure shows the Structure Attributes panel.

Structure Attributes Panel

4-23

4 Custom Storage Classes

The Structure Attributes properties are as follows:

• Struct name: If you select Instance specific, specify the struct name
when configuring each instance of the class.

If Specify is selected, an edit field is displayed (as shown in Structure
Attributes Panel on page 4-23) for entry of the name of the structure to be
used in the struct definition. Edit fields Type tag, Type token, and
Type name are also displayed.

• Is typedef: When this option is selected a typedef is generated for the
struct definition, for example:

typedef struct {
...

} SignalDataStruct;

Otherwise, a simple struct definition is generated.

• Bit-pack booleans: When this option is selected, signals and/or
parameters that have Boolean data type are packed into bit fields in the
generated struct.

• Type tag: Specifies a tag to be generated after the struct keyword in
the struct definition.

• Type token: Some compilers support an additional token (which is simply
another string) after the type tag. To generate such a token, enter the
string in this field.

• Type name: Specifies the string to be used in typedef definitions. This
field is visible if Is typedef is selected.

The following listing is the pseudocode preview corresponding to the
Structure Attributes properties displayed in Structure Attributes Panel
on page 4-23.

Header file:

No header file is specified. By default, data is
exported with the generated model.h file.

Type definition:

4-24

Designing Custom Storage Classes

/* CSC type comment generated by default */

typedef struct aToken myTag {
:

} myType;

Declaration:

/* CSC declaration comment generated by default */

extern myType MyStruct;

Definition:

/* CSC definition comment generated by default */

myType MyStruct = {...};

4-25

4 Custom Storage Classes

Editing Memory Section Definitions
The Memory Section panel lets you view, edit, and verify memory section
definitions. Memory section definitions add comments, qualifiers, and
#pragma directives to generated symbol declarations.

The Memory section definitions list lets you select a memory section
definition to view or edit. The predefined memory section definitions are as
follows:

• Default: A placeholder definition (read-only).

• MemConst: Generates a const declaration.

• MemVolatile: Generates a volatile declaration.

• MemConstVolatile: Generates a const volatile declaration.

The available memory section definitions also appear in the Memory section
name menu in the Custom Storage Class panel.

4-26

Designing Custom Storage Classes

The properties of a memory section definition are as follows:

• Memory section name: Name of the memory section (displayed in
Memory section definitions list).

• Is const: If selected, a const qualifier is added to the symbol declarations.

• Is volatile: If selected, a volatile qualifier is added to the symbol
declarations.

• Qualifier: The string entered into this field is added to the symbol
declarations as a further qualifier. Note that no verification is performed
on this qualifier.

Memory section comment: Comment inserted before declarations
belonging to this memory section. Comments must conform to the ANSI C
standard (/*...*/). Use \n to specify a new line.

• Pre-memory section pragma: pragma directive that precedes the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

• Post-memory section pragma: pragma directive that follows the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

4-27

4 Custom Storage Classes

Previewing Generated Code
If you click Validate on the Memory Section panel, the Pseudocode
preview panel displays a preview of code that is generated from objects
of the given class. The panel also displays messages (in blue) to highlight
changes as they are made. The code preview changes dynamically as you edit
the class properties.

4-28

Designing Custom Storage Classes

Validating CSC Definitions
To validate a CSC definition, select the definition and click Validate on the
Memory Section panel. The Custom Storage Class Designer then checks the
definition for consistency. The Validation result panel displays any errors
encountered when a selected CSC definition is validated.

Validation is also performed when the whenever CSC definitions are saved.
In this case, all CSC definitions are selected. (See “Saving Your Definitions”
on page 4-29.)

Saving Your Definitions
After you have created or edited a CSC or memory section definition, you
must save your definition to the CSC registration file. To do this, click Save
in the Filename panel. When you click Save, the current CSC definitions
that are in memory are validated, and the CSC definitions are written out.

If errors occur, they are reported in the Validation result panel. The
definitions are still saved, however. You should correct all validation errors
and resave your definitions.

Note If you edit a CSC definition that has been assigned to existing
parameter or signal objects, you must restart MATLAB after editing and
saving the CSC definition.

4-29

4 Custom Storage Classes

Creating Packages with CSC Definitions
You can create a package and associate your own CSC definitions with
classes contained in the package. You do this creating a data object package
containing classes derived from Simulink.Parameter or Simulink.Signal;
this package must have a CSC registration file. The procedure below describes
how to create such a package.

1 Open the Simulink Data Class Designer by typing the following command
at the MATLAB command prompt:

sldataclassdesigner

2 The Data Class Designer loads all packages that exist on the MATLAB
path.

3 To create a new package, click New next to the Package name field. If
desired, edit the Package name. Then, click OK.

4 In the Parent directory field, enter the path to the directory where you
want to store the new package.

5 Click on the Classes tab.

6 Create a new class by clicking New next to the Class name field. If
desired, edit the Class name. Then, click OK.

7 In the Derived from menus, select Simulink.Signal or
Simulink.Parameter.

8 The Create your own custom storage classes for this class option is
now enabled. This option is enabled when the selected class is derived from
Simulink.Signal or Simulink.Parameter. You must select this option to
create CSCs for the new class. If the Create your own custom storage
classes for this class option is not selected, the new class inherits the
CSCs of the parent class.

4-30

Creating Packages with CSC Definitions

Note To create a CSC registration file for a package, the Create your
own custom storage classes for this class option must be selected for at
least one of the classes in the package.

In the figure below, a new package called mypkg has been created. This
package contains a new class, derived from Simulink.Signal, called sig.
The Create your own custom storage classes for this class option
is selected.

4-31

4 Custom Storage Classes

9 If desired, repeat steps 6–8 to add other derived classes to the package and
associate CSCs with them.

10 Click Confirm Changes. In the Confirm Changes pane, select the
package you created. Add the parent directory to the MATLAB path if
necessary. Then, click Write Selected.

The package directories and files, including the CSC registration file, are
written out to the parent directory.

11 Click Close.

12 You can now view and edit the CSCs belonging to your package in the
Custom Storage Class Designer. Initially, the package contains only the
Default CSC definition, as shown in the figure below.

4-32

Creating Packages with CSC Definitions

13 Add and edit your CSC and memory section definitions, as described in
“Designing Custom Storage Classes” on page 4-15. After you have created
CSC definitions for your package, you can instantiate objects of the classes
belonging to your package, and assign CSCs to them.

4-33

4 Custom Storage Classes

Defining Advanced Custom Storage Class Types
Certain data layouts (for example, nested structures) cannot be generated
using the standard Unstructured and FlatStructure custom storage class
types. You can create a new custom storage class from scratch if you want
to generate other types of data. Note that this requires knowledge of TLC
programming and use of a special advanced mode of the Custom Storage
Class Designer.

The GetSet CSC (see “GetSet Custom Storage Class for Data Store Memory”
on page 4-38) is an example of an advanced CSC that is provided with
Real-Time Workshop Embedded Coder.

Create Your Own Parameter and Signal Classes
The first step is to use the Simulink Data Class Designer to create your
own package containing classes derived from Simulink.Parameter or
Simulink.Signal. This procedure is described in “Creating Packages with
CSC Definitions” on page 4-30.

Add your own object properties and class initialization if desired. For each
of your classes, select the Create your own custom storage classes for
this class option.

Create a Custom Attributes Class for Your CSC
(Optional)
If you have instance-specific properties that are relevant only to your
CSC, you should use the Simulink Data Class Designer to create a custom
attributes class for the package. A custom attributes class is a subclass of
Simulink.CustomStorageClassAttributes. The name, type, and default
value properties you set for the custom attributes class define the user view of
instance-specific properties.

For example, the ExportToFile custom storage class requires that you set
the RTWInfo.CustomAttributes.HeaderFile property to specify a .h file
used for exporting each piece of data. See “Predefined CSCs” on page 4-6 for
further information on instance-specific properties.

4-34

Defining Advanced Custom Storage Class Types

Write TLC Code for Your CSC
The next step is to write TLC code that implements code generation for data
of your new custom storage class. A template TLC file is provided for this
purpose. To create your TLC code, follow these steps:

1 Create a tlc directory inside your package’s @directory (if it does not
already exist). The naming convention to follow is

@PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from
matlabroot/toolbox/rtw/targets/ecoder/csc_templates into your tlc
directory to use as a starting point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file.
Comments describe how to specify code generation for data of your custom
storage class (for example, how data structures are to be declared, defined,
and whether they are accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another
existing package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions
After you have created a package for your new custom storage class and
written its associated TLC code, you must register your class definitions with
the Custom Storage Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type,
designated Other. The Other type is designed to support special CSC
types that cannot be accommodated by the standard Unstructured and
FlatStructure custom storage class types. The Other type cannot be
assigned to a CSC except when the Custom Storage Class Designer is in
advanced mode.

4-35

4 Custom Storage Classes

To register your class definitions:

1 Launch the Custom Storage Class Designer in advanced mode by typing
the following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.

3 Set the Type of the custom storage class to Other. Note that when you do
this, the Other Attributes pane is displayed. This pane is visible only for
CSCs whose Type is set to Other.

If you specify a customized package, additional options, as defined by the
package, also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties
are:

• Is grouped: Select this option if you intend to combine multiple data
objects of this CSC into a single variable in the generated code. (for
example, a struct).

• TLC file name: Enter the name of the TLC file corresponding to this
custom storage class. The location of the file is assumed to be in the /tlc
subdirectory for the package, so you should not enter the path to the file.

• CSC attributes class name: (optional) If you created a custom
attributes class corresponding to this custom storage class, enter the full
name of the custom attributes class. (see “Create a Custom Attributes
Class for Your CSC (Optional)” on page 4-34).

4-36

Defining Advanced Custom Storage Class Types

5 Set the remaining properties on the General and Comments panes based
on the layout of the data that you wish to generate (as defined in your
TLC file).

4-37

4 Custom Storage Classes

GetSet Custom Storage Class for Data Store Memory
The GetSet custom storage class is designed to generate specialized function
calls to read from (get) and write to (set) the memory associated with a Data
Store Memory block. The instance-specific properties of the GetSet storage
class are summarized in GetSet Storage Class Properties on page 4-38.

GetSet Storage Class Properties

Property Description

GetFunction String that specifies the name of a function call to read
data.

SetFunction String that specifies the name of a function call to write
data.

HeaderFile
(optional)

String that specifies the name of a header (.h) file to add
as an #include in the generated code.

Note If you omit the HeaderFile property for a
GetSet data object, you must specify a header file by
an alternative means, such as the Header file field
of the Real-Time Workshop/Custom Code pane of
the Configuration Parameters dialog. Otherwise, the
generated code might not compile or might function
improperly.

For example, if the GetFunction of data store memory X is specified as
'get_X' then the generated code calls get_X() wherever the value of X is
used. Similarly, if the SetFunction for signal X is specified as 'set_X' then
the generated code calls set_X(value) wherever the value of X is assigned.

For wide signals, an additional index argument is passed, so the calls to the
get and set functions are get_X(idx) and set_X(idx, value) respectively.

4-38

GetSet Custom Storage Class for Data Store Memory

The following restrictions apply to the GetSet custom storage class:

• The GetSet custom storage class supports only signals of non-complex
data types.

• The GetSet custom storage class is designed for use with the state of the
Data Store Memory block

The GetSet storage class is an example of an advanced CSC because it cannot
be represented by the standard Unstructured or FlatStructure custom
storage class types. To access the CSC definition for GetSet, you must launch
Custom Storage Class designer in advanced mode:

cscdesigner -advanced

For more details about the definition of the GetSet storage class, look at its
associated TLC code in the file

matlabroot\toolbox\simulink\simulink\@Simulink\tlc\GetSet.tlc

Code Generation Example
The model below contains a Data Store Memory that resolves to Simulink
signal object X. X is configured to use the GetSet custom storage class as
follows:

X = Simulink.Signal;
X.RTWInfo.StorageClass = `Custom';
X.RTWInfo.CustomStorageClass = `GetSet';
X.RTWInfo.CustomAttributes.GetFunction = `get_X';
X.RTWInfo.CustomAttributes.SetFunction = `set_X';
X.RTWInfo.CustomAttributes.HeaderFile = `user_file.h';

4-39

4 Custom Storage Classes

The following code is generated for this model:

/* Includes for objects with custom storage classes. */
#include "user_file.h"

void getset_csc_step(void)
{

/* local block i/o variables */
real_T rtb_DSRead_o;

/* DataStoreWrite: '<Root>/DSWrite' incorporates:
* Inport: '<Root>/In1'
*/

set_X(getset_csc_U.In1);

/* DataStoreRead: '<Root>/DSRead' */
rtb_DSRead_o = get_X();

/* Outport: '<Root>/Out1' */
getset_csc_Y.Out1 = rtb_DSRead_o;

}

Note The Data Store Memory block creates a local variable to ensure that
its value does not change in the middle of a simulation step. This also avoids
multiple calls to the data’s GetFunction.

4-40

Requirements and Restrictions for Use of CSCs

Requirements and Restrictions for Use of CSCs
This section describes how to set code generation options that affect the
operation of CSCs, and discusses a few restrictions on the use of CSCs.

Setting Related Code Generation Options

• During code generation, custom storage classes assigned to parameters
are ignored unless the Inline parameters option in the Optimization
options tab is selected. When configuring your model and its parameters,
the recommended practice is to select the Inline parameters option first,
then assign storage classes to the desired variables or objects.

In this respect, code generation with custom storage classes behaves
identically to code generation with built-in storage classes.

• Before generating code, make sure that the Ignore custom storage
classes option in the Custom storage classes subpane of the Real-Time
Workshop pane of the active configuration set is deselected. When this
option is on, data objects with custom storage classes are treated as if their
storage class attribute is set to Auto.

Restrictions
The Fcn block does not support parameters with custom storage class in code
generation.

Use of CSCs with Model Referencing
This section describes restrictions that apply to the use of CSC in models that
use the Model Referencing feature.

In the discussion below, the term grouped CSC refers to a CSC that results in
multiple data objects (in the base workspace) being referenced with a single
variable in the generated code. For example, several signal objects might be
grouped together in a structure by using the Struct or Bitfield custom
storage classes. Data grouped in this way are referred to as grouped data.

4-41

4 Custom Storage Classes

In the current release, the following restrictions apply to models that use the
Model Referencing feature:

• If data is assigned a grouped CSC, the CSC’s Data scope property must
be Imported and the data declaration must be provided in a user-supplied
header file.

• If data is assigned an ungrouped CSC (for example, Const) and the data’s
Data scope property is Exported, its Header file property must be
unspecified. This results in the data being exported with the standard
header file, model.h. Note that for ungrouped data, the Data scope and
Header file properties are either specified by the selected CSC, or as one
of the data object’s instance-specific properties.

4-42

Older Custom Storage Classes (Prior to Release 14)

Older Custom Storage Classes (Prior to Release 14)
In releases prior to Real-Time Workshop Embedded Coder 4.0 (MATLAB
Release 14), custom storage classes were implemented with special
Simulink.CustomSignal and Simulink.CustomParameter classes. This
section describes these older classes.

Note Models that use the Simulink.CustomSignal and
Simulink.CustomParameter classes continue to operate correctly.
The current CSCs support a superset of the functions of the older
classes. Therefore, you should consider using the Simulink.Signal and
Simulink.Parameter classes instead (see “Compatibility Issues for Older
Custom Storage Classes” on page 4-50).

Simulink.CustomParameter Class
This class is a subclass of Simulink.Parameter. Objects of this class have
expanded RTWInfo properties. The properties of Simulink.CustomParameter
objects are:

• RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

• RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in the tables below. This property controls
the generated storage declaration and code for the object.

• RTWInfo.CustomAttributes. This property defines additional attributes
that are exclusive to the class, as described in “Instance Specific Attributes
for Older Storage Classes” on page 4-47.

• Value. This property is the numeric value of the object, used as an initial
(or inlined) parameter value in generated code.

4-43

4 Custom Storage Classes

Simulink.CustomSignal Class
This class is a subclass of Simulink.Signal. Objects of this class have
expanded RTWInfo properties. The properties of Simulink.CustomSignal
objects are:

• RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

• RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in the tables below. This property controls
the generated storage declaration and code for the object.

• RTWInfo.CustomAttributes. This optional property defines additional
attributes that are exclusive to the storage class, as described in “Instance
Specific Attributes for Older Storage Classes” on page 4-47.

The following tables summarize the predefined custom storage classes for
Simulink.CustomSignal and Simulink.CustomParameter objects. The entry
for each class indicates

• Name and purpose of the class.

• Whether the class is valid for parameter or signal objects. For example,
you can assign the storage class Const to a parameter object. This storage
class is not valid for signals, however, since signal data (except for the case
of invariant signals) is not constant.

• Whether the class is valid for complex data or nonscalar (wide) data.

• Data types supported by the class.

The first three classes, shown in Const, ConstVolatile, and Volatile Storage
Classes (Prior to Release 14) on page 4-45, insert type qualifiers in the data
declaration.

4-44

Older Custom Storage Classes (Prior to Release 14)

Const, ConstVolatile, and Volatile Storage Classes (Prior to Release 14)

Class
Name Purpose Parameters Signals

Data
Types Complex Wide

Const Use const
type qualifier
in declaration

Y N any Y Y

ConstVolatile Use
const volatile
type qualifier
in declaration

Y N any Y Y

Volatile Use volatile
type qualifier
in declaration

Y Y any Y Y

The second set of three classes, shown in ExportToFile, ImportFromFile, and
Internal Storage Classes (Prior to Release 14) on page 4-45, handles issues
of data scope and file partitioning.

ExportToFile, ImportFromFile, and Internal Storage Classes (Prior to Release 14)

Class
Name Purpose Parameters Signals

Data
Types Complex Wide

ExportToFile Generate and include
files, with
user-specified
name,
containing global
variable
declarations and
definitions

Y Y any Y Y

4-45

4 Custom Storage Classes

ExportToFile, ImportFromFile, and Internal Storage Classes (Prior to Release 14)
(Continued)

Class
Name Purpose Parameters Signals

Data
Types Complex Wide

ImportFromFile Include predefined
header files
containing
global variable
declarations

Y Y any Y Y

Internal Declare and
define global
variables
whose scope is
limited to the code
generated by the
Real-Time Workshop

Y Y any Y Y

The final three classes, shown in BitField, Define, and Struct Storage Classes
(Prior to Release 14) on page 4-46, specify the data structure or construct
used to represent the data.

BitField, Define, and Struct Storage Classes (Prior to Release 14)

Class
Name Purpose Parameters Signals

Data
types Complex Wide

BitField Embed
Boolean
data
in a named
bit field

Y Y Boolean N N

4-46

Older Custom Storage Classes (Prior to Release 14)

BitField, Define, and Struct Storage Classes (Prior to Release 14) (Continued)

Class
Name Purpose Parameters Signals

Data
types Complex Wide

Define Represent
parameters
with a
#define
macro

Y N any N N

Struct Embed
data in
a named
struct to
encapsulate
sets of data

Y Y any N Y

Instance Specific Attributes for Older Storage Classes
Some custom storage classes have attributes that are exclusive to
the class. These attributes are made visible as members of the
RTWInfo.CustomAttributes field. For example, the BitField class has a
BitFieldName attribute (RTWInfo.CustomAttributes.BitFieldName).

Additional Properties of Custom Storage Classes (Prior to Release 14) on
page 4-48 summarizes the storage classes with additional attributes, and the
meaning of those attributes. Attributes marked optional have default values
and may be left unassigned.

4-47

4 Custom Storage Classes

Additional Properties of Custom Storage Classes (Prior to Release 14)

Storage Class
Name

Additional
Properties Description

Optional
(has
default)

ExportToFile FileName String. Defines the name of the
generated header file within which
the global variable declaration should
reside. If unspecified, the declaration
is placed in model_export.h by
default.

Y

ImportFromFile FileName String. Defines the name of the
generated header file which to be
used in #include directive.

N

ImportFromFile IncludeDelimeter Enumerated. Defines delimiter
used for filename in the #include
directive. Delimiter is either double
quotes (for example, #include
"vars.h") or angle brackets (for
example, #include <vars.h>). The
default is quotes.

Y

BitField BitFieldName String. Defines name of bit field
in which data is embedded; if
unassigned, the name defaults to
rt_BitField.

Y

Struct StructName String. Defines name of the struct
in which data is embedded; if
unassigned, the name defaults to
rt_Struct.

Y

4-48

Older Custom Storage Classes (Prior to Release 14)

Assigning a Custom Storage Class to Data
You can create custom parameter or signal objects from the MATLAB
command line. For example, the following commands create a custom
parameter object p and a custom signal object s:

p = Simulink.CustomParameter
s = Simulink.CustomSignal

After creating the object, set the RTWInfo.CustomStorageClass and
RTWInfo.CustomAttributes fields. For example, the following commands
sets these fields for the custom parameter object p:

p.RTWInfo.CustomStorageClass = 'ExportToFile'
p.RTWInfo.CustomAttributes.FileName = 'testfile.h'

Finally, make sure that the RTWInfo.StorageClass property is set to Custom.
If you inadvertently set this property to some other value, the custom storage
properties are ignored.

Code Generation with Older Custom Storage Classes
The procedure for generating code with data objects that have a custom
storage class is similar to the procedure for code generation using Simulink
data objects that have built-in storage classes. If you are unfamiliar with this
procedure, see the discussion of Simulink data objects in the “Working with
Data Structures” section of the Real-Time Workshop documentation.

To generate code with custom storage classes, you must

1 Create one or more data objects of class Simulink.CustomParameter or
Simulink.CustomSignal.

2 Set the custom storage class property of the objects, as well as the
class-specific attributes (if any) of the objects.

3 Reference these objects as block parameters, signals, block states, or Data
Store memory.

When generating code from a model employing custom storage classes, make
sure that the Ignore custom storage classes option is not selected. This is
the default for Real-Time Workshop Embedded Coder.

4-49

4 Custom Storage Classes

When Ignore custom storage classes is selected:

• Objects with custom storage classes are treated as if their storage class
attribute is set to Auto.

• The storage class of signals that have custom storage classes is not
displayed on the signal line, even if the Storage class option of the
Simulink Format menu is selected.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

When using Real-Time Workshop Embedded Coder, you can control the
Ignore custom storage classes option with the check box in the Real-Time
Workshop pane of the Configuration Parameters dialog.

If you are using a target that does not have a check box for this option (such
as a custom target) you can enter the option directly into the TLC options
field in the Real-Time Workshop pane of the Configuration Parameters
dialog. The following example turns the option on:

-aIgnoreCustomStorageClasses=1

Compatibility Issues for Older Custom Storage
Classes
In Release 14, the full functionality of the Simulink.CustomSignal and
Simulink.CustomParameter classes was added to the Simulink.Signal
and Simulink.Parameter classes. You should consider replacing the use of
Simulink.CustomSignal and Simulink.CustomParameter objects by using
equivalent Simulink.Signal and Simulink.Parameter objects.

If you prefer, you can continue to use the Simulink.CustomSignal and
Simulink.CustomParameter classes in the current release. Note that the
following changes have been implemented in these classes:

• The Internal storage class has been removed from the enumerated values
of the RTWInfo.CustomStorageClass property. Internal storage class is
no longer supported.

4-50

Older Custom Storage Classes (Prior to Release 14)

• For the ExportToFile and ImportFromFile storage
classes, the RTWInfo.CustomAttributes.FileName and
RTWInfo.CustomAttributes.IncludeDelimeter properties
have been obsoleted and combined into a single property,
RTWInfo.CustomAttributes.HeaderFile. When specifying a header file,
include both the filename and the required delimiter as you want them to
appear in generated code, as in the following example:

myobj.RTWInfo.CustomAttributes.HeaderFile = '<myheader.h>';

• Prior to Release 14, user-defined CSCs were created by designing custom
packages that included the CSC definitions. This technique for creating
CSCs is obsolete; see “Creating Packages with CSC Definitions” on page
4-30 for a description of the current procedure, which is much simpler.

If you designed your own custom packages containing CSCs prior to
Release 14 you should convert them to Release 14 CSCs. The conversion
procedure is described in the next section, “Converting Older Packages to
Use CSC Registration Files” on page 4-51.

Converting Older Packages to Use CSC Registration Files
A Simulink data class package can be associated with one or more CSC
definitions. In Release 14, the linkage between a set of CSC definitions and
a package is formed when a CSC registration file (csc_registration.m)
is located in the package directory.

Prior to Release 14, user-defined CSCs were created by designing custom
packages that included the CSC definitions as part of the package.

The Simulink Data Class Designer supports conversion of older packages to
the use of CSC registration files. When such a package is selected in Simulink
Data Class Designer, a special conversion button is displayed on the Custom
Storage Classes pane. This button lets you invoke a conversion procedure;
you can then write out all files and directories required to define the package,
including a CSC registration file. To convert a package:

1 You should make a complete backup copy of the package directory before
converting the package. After backing up the directory, remove the @ prefix
from the backup directory name and make sure that the backup directory
is not on the MATLAB path.

4-51

4 Custom Storage Classes

2 Open the Simulink Data Class Designer by typing the following command
at the MATLAB command prompt:

sldataclassdesigner

3 The Data Class Designer loads all packages that exist on the MATLAB
path. Select the package to be converted from the Package name menu.
Then, click OK.

4 If you want to store the converted package in a different directory than the
original package, enter the desired path in the Parent directory field.
This step is optional.

The figure below shows the package my_converted_package. The package
definition is stored in d:\work\testConversion.

4-52

Older Custom Storage Classes (Prior to Release 14)

5 Click on the Custom Storage Classes pane. The pane displays a message
indicating that the package contains obsolete CSC definitions, as shown in
this figure.

Below the message text, the pane also contains a button captioned Convert
Package to Use CSC Registration File. This button invokes a script
that converts the package to use a CSC registration file.

4-53

4 Custom Storage Classes

Note that this button does not actually create the CSC registration file.
That happens when the package files are written out, as described below.

6 Click Convert Package to Use CSC Registration File. After conversion,
the appearance of the pane changes, as shown below.

4-54

Older Custom Storage Classes (Prior to Release 14)

7 Click Confirm Changes. In the Confirm Changes pane, select the
package you converted. Add the parent directory to the MATLAB path if
necessary. Then, click Write Selected.

8 Click Close.

9 You can now view and edit the CSCs belonging to your package in the
Custom Storage Class Designer. To do so, type the following command at
the MATLAB prompt:

cscdesigner

Note You must launch the CSC Designer with the -advanced motion to
edit the attributes of old CSCs because they are defined with user-defined
TLC files.

The Custom Storage Class Designer loads all packages that have a CSC
registration file.

10 Select your converted package from the Select package menu.

The figure below shows the Custom Storage Class Designer displaying
the CSCs defined in the package my_converted_package. See “Designing
Custom Storage Classes” on page 4-15 for a description of the operation of
the Custom Storage Class Designer.

4-55

4 Custom Storage Classes

Note All user-defined CSCs created prior to Release 14 are defined with
their own TLC code. As a result, after conversion, the Type is set to Other
(as opposed to Unstructured or FlatStructure). See “Defining Advanced
Custom Storage Class Types” on page 4-34 for more information.

11 Restart MATLAB to ensure that your converted package is accessible.

4-56

5

Memory Sections

Introduction to Memory Sections
(p. 5-2)

Memory section capabilities,
an online demo, and sources of
additional information.

Requirements for Defining Memory
Sections (p. 5-4)

Requirements you must meet before
you can define memory sections.

Defining Memory Sections (p. 5-6) Shows you how to define memory
sections for use in any context.

Assigning Memory Sections to
Custom Storage Classes (p. 5-9)

Techniques for using memory
sections to apply pragmas to custom
storage classes.

Applying Memory Sections to
Model-Level Functions and Internal
Data (p. 5-11)

Techniques for using memory
sections to apply pragmas to
model-level functions and internal
data.

Applying Memory Sections to Atomic
Subsystems (p. 5-14)

Techniques for using memory
sections to apply pragmas to the code
for atomic subsystems.

Examples of Generated Code with
Memory Sections (p. 5-17)

Typical memory section definitions
and the code that results when you
use them.

5 Memory Sections

Introduction to Memory Sections
Real-Time Workshop Embedded Coder provides a memory section capability
that allows you to insert comments and pragmas into the generated code for

• Data in custom storage classes

• Model-level functions

• Model-level internal data

• Subsystem functions

• Subsystem internal data

Pragmas inserted into generated code can surround

• A contiguous block of function or data definitions

• Each function or data definition separately

When pragmas surround each function or data definition separately, the text
of each pragma can contain the name of the definition to which it applies.

Memory Sections Demo
To see a demo of memory sections, type rtwdemo_memsec in the MATLAB
Command Window.

Additional Information
See the following for additional information relating to memory sections:

• Simulink data types, packages, data classes, and data objects:

- “Working with Data” in the Simulink documentation

• Real-Time Workshop data structures and storage classes:

- “Working with Data Structures” in the Real-Time Workshop
documentation

• Real-Time Workshop Embedded Coder custom storage classes:

5-2

Introduction to Memory Sections

- Chapter 4, “Custom Storage Classes” in the Real-Time Workshop
Embedded Coder documentation

• Fine-tuned optimization of generated code for functions or data:

- The “Real-Time Workshop Target Language Compiler” documentation

5-3

5 Memory Sections

Requirements for Defining Memory Sections
Before you can define memory sections, you must do the following:

1 Set the Simulink model’s code generation target to an embedded target
such as ert.tlc.

2 If you need to create packages, specify package properties, or create classes,
including custom storage classes, choose Tools > Data Class Designer
in the model window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the Simulink Data Class Designer appears:

Instructions for using the Simulink Data Class Designer appear in
“Working with Data” in the Simulink documentation. See also the
instructions that appear when you click the Custom Storage Classes tab.

3 If you need to specify custom storage class properties,

5-4

Requirements for Defining Memory Sections

a Choose View > Model Explorer in the model window.

The Model Explorer appears.

b Choose Tools > Custom Storage Class Designer in the Model
Explorer window.

A notification box appears that states Please Wait ... Finding
Packages. After a brief pause, the notification box closes and the
Custom Storage Class Designer appears.

c Select the Custom Storage Class tab. The Custom Storage Class
pane looks like this:

d Use the Custom Storage Class pane as needed to specify custom
storage class properties. Instructions for using this pane are in
“Designing Custom Storage Classes” on page 4-15.

5-5

5 Memory Sections

Defining Memory Sections
After you have satisfied the requirements in “Requirements for Defining
Memory Sections” on page 5-4, you can define memory sections and specify
their properties. To create new memory sections or specify memory section
properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Click the Memory Section tab of the Custom Storage Class Designer. The
Memory Section pane looks like this:

5-6

Defining Memory Sections

The rest of this section describes the use of the Memory section subpane
on the lower left. For descriptions of the other subpanes, instructions for
validating memory section definitions, and other information, see “Editing
Memory Section Definitions” on page 4-26.

Specifying the Memory Section Name
To specify the name of a memory section, use the Name field. A memory
section name must be a legal MATLAB identifier.

Specifying a Qualifier for Custom Storage Class Data
Definitions
To specify a qualifier for custom storage class data definitions in a memory
section, enter the components of the qualifier below the Name field.

• To specify const, check Is const.

• To specify volatile, check Is volatile.

• To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same
left-to-right order in which their definitions appear in the dialog box. A
preview appears in the Pseudocode preview subpane on the lower right.

Note Specifying a qualifier affects only custom storage class data definitions.
The code generator omits the qualifier from any other category of definition.

Specifying Comment and Pragma Text
To specify a comment, pre-pragma, or post-pragma for a memory section,
enter the text in the appropriate edit boxes on the left side of the Custom
Storage Class Designer. These boxes accept multiple lines separated by
ordinary Returns.

5-7

5 Memory Sections

Surrounding Individual Definitions with Pragmas
If the Pragma surrounds field for a memory section specifies Each
variable, the code generator will surround each definition in a contiguous
block of definitions with the comment, pre-pragma, and post-pragma defined
for the section. This behavior occurs with all categories of definitions.

If the Pragma surrounds field for a memory section specifies All
variables, the code generator will insert the comment and pre-pragma for the
section before the first definition in a contiguous block of custom storage class
data definitions, and the post-pragma after the last definition in the block.

Note Specifying All variables affects only custom storage class data
definitions. For any other category of definition, the code generator surrounds
each definition separately regardless of the value of Pragma surrounds.

Including Identifier Names in Pragmas
When pragmas surround each separate definition in a contiguous block, you
can include the string %<identifier> in a pragma. The string must appear
without surrounding quotes.

• When %<identifier> appears in a pre-pragma, the code generator will
substitute the identifier from the subsequent function or data definition.

• When %<identifier> appears in a post-pragma, the code generator will
substitute the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround
each variable. The Validate phase will report an error if you violate this rule.

Note Although %<identifier> looks like a TLC variable, it is not: it is just
a keyword that directs the code generator to substitute the applicable data
definition identifier when it outputs a pragma. TLC variables cannot appear
in pragma specifications in the Memory Section pane.

5-8

Assigning Memory Sections to Custom Storage Classes

Assigning Memory Sections to Custom Storage Classes
To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Select the Custom Storage Class tab. The Custom Storage Class
pane looks like this:

4 Select the desired custom storage class in the Custom storage class
definitions pane.

5 Select the desired memory section from the Memory section pull-down.

5-9

5 Memory Sections

6 Click Apply to apply changes to the open copy of the model; Save to apply
changes and save them to disk; or OK to apply changes, save changes, and
close the Custom Storage Class Designer.

Generated code for all data definitions in the specified custom storage class
will be enclosed in the pragmas of the specified memory section. The pragmas
can surround contiguous blocks of definitions or each definition separately,
as described in “Surrounding Individual Definitions with Pragmas” on page
5-8. For more information, see “Creating Packages with CSC Definitions”
on page 4-30.

5-10

Applying Memory Sections to Model-Level Functions and Internal Data

Applying Memory Sections to Model-Level Functions and
Internal Data

When using Real-Time Workshop Embedded Coder, you can apply memory
sections to the following categories of model-level functions:

Function Category Function Subcategory

Initialize/StartInitialize/Terminate functions

Terminate

Step functions

Run-time initialization

Derivative

Enable

Execution functions

Disable

When using Real-Time Workshop Embedded Coder, you can apply memory
sections to the following categories of internal data:

Data Category Data Definition Data Purpose

model_cP Constant parameters

model_cB Constant block I/O

Constants

model_Z Zero representation

model_U Root inputsInput/Output

model_Y Root outputs

model_B Block I/O

model_D D-work vectors

model_M Run-time model

Internal data

model_Zero Zero-crossings

Parameters model_P Parameters

5-11

5 Memory Sections

Memory section specifications for model-level functions and internal data
apply to the top level of the model and to all subsystems except atomic
subsystems that contain overriding memory section specifications, as
described in “Applying Memory Sections to Atomic Subsystems” on page 5-14.

To specify memory sections for model-level functions or internal data,

1 Open the Model Explorer; view Real-Time Workshop Model Configurations
in the right pane; select the General tab. (Alternatively, choose
Simulation > Configuration Parameters in the model window.)

2 Ensure that the System target file is an ERT target, such as ert.tlc .

5-12

Applying Memory Sections to Model-Level Functions and Internal Data

3 Select the Memory Sections tab. The Memory Sections pane looks
like this:

4 Initially, the Package field specifies ---None--- and the pull-down lists
only built-in packages. If you have defined any packages of your own, click
Refresh package list. This action adds all user-defined packages on your
search path to the package list.

5 In the Package pull-down, select the package that contains the memory
sections that you want to apply.

6 In the pull-down for each category of internal data and model-level
function, specify the memory section (if any) that you want to apply to that
category. Accepting or specifying Default omits specifying any memory
section for that category.

7 Click Apply to save any changes to the package and memory section
selections.

5-13

5 Memory Sections

Applying Memory Sections to Atomic Subsystems
For any atomic subsystem whose generated code format is Function or
Reusable Function, you can specify memory sections for functions and
internal data that exist in that code format. Such specifications override any
model-level memory section specifications. Such overrides apply only to the
atomic subsystem itself, not to any subsystems within it. Subsystems of an
atomic subsystem inherit memory section specifications from the top-level
model, not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.

2 Choose Subsystem Parameters from the context menu. The Function
Block Parameters: Subsystem dialog box appears.

3 Ensure that Treat as atomic unit is checked. Otherwise, you cannot
specify memory sections for the subsystem.

For an atomic system, you can use the Real-Time Workshop system
code field to control the format of the generated code.

4 Ensure that Real-Time Workshop system code is Function or Reusable
function. Otherwise, you cannot specify memory sections for the
subsystem.

5 If the code format is Function and you want separate data, check
Function with separate data.

5-14

Applying Memory Sections to Atomic Subsystems

The Real-Time Workshop pane now shows all applicable memory
section options. The available options depend on the values of Real-Time
Workshop system code and the Function with separate data check
box. When the former is Function and the latter is checked, the pane looks
like this:

6 In the pull-down for each available definition category, specify the memory
section (if any) that you want to apply to that category.

• Selecting Inherit from model inherits the corresponding selection (if
any) from the model level (not any parent subsystem).

• Selecting Default specifies that the category has no associated memory
section, overriding any model-level specification for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog
box.

5-15

5 Memory Sections

Caution If you use Build Subsystem to generate code for an atomic
subsystem that specifies memory sections, the code generator ignores the
subsystem-level specifications and uses the model-level specifications instead.
The generated code is the same as if the atomic subsystem specified Inherit
from model for every category of definition. For information about Build
Subsystem, see “Generating Code and Executables from Subsystems”.

5-16

Examples of Generated Code with Memory Sections

Examples of Generated Code with Memory Sections
The next figure shows a model that defines one subsystem, and the contents
of that subsystem.

Assume that the subsystem is atomic, the Real-Time Workshop system
code is Reusable function, memory sections have been created and
assigned as shown in the next two tables, and all data memory sections
specify Pragma surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Pre-pragma #pragma IO_beginInput/Output MemSect1

Post-pragma #pragma IO-end

Pre-pragma #pragma InData-begin(%<identifier>)Internal data MemSect2

Post-pragma #pragma InData-end

Pre-pragma #pragma Parameters-beginParameters MemSect3

Post-pragma #pragma Parameters-end

Pre-pragma #pragma InitTerminate-beginInitialize/
Terminate

MemSect4

Post-pragma #pragma InitTerminate-end

5-17

5 Memory Sections

Model-Level Memory Section Assignments and Definitions (Continued)

Section
Assignment

Section
Name

Field Name Field Value

Pre-pragma #pragma ExecFunc-begin(%<identifier>)Execution
functions

MemSect5

Post-pragma #pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Pre-pragma #pragma DATA_SEC(%<identifier>,
"FAST_RAM")

Execution
functions

MemSect6

Post-pragma

Given the preceding specifications and definitions, the code generator would
create the following code, with minor variations depending on the current
version of the Target Language Compiler.

5-18

Examples of Generated Code with Memory Sections

Model-Level Data Structures
#pragma IO-begin
ExternalInputs_mySample mySample_U;
#pragma IO-end

#pragma IO-begin
ExternalOutputs_mySample mySample_Y;
#pragma IO-end

#pragma InData-begin(mySample_B)
BlockIO_mySample mySample_B;
#pragma InData-end

#pragma InData-begin(mySample_DWork)
D_Work_mySample mySample_DWork;
#pragma InData-end

#pragma InData-begin(mySample_M_)
RT_MODEL_mySample mySample_M_;
#pragma InData-end

#pragma InData-begin(mySample_M)
RT_MODEL_mySample *mySample_M = &mySample_M_;
#pragma InData-end

#pragma Parameters-begin
Parameters_mySample mySample_P = {

0.0 , {2.3}
};
#pragma Parameters-end

5-19

5 Memory Sections

Model-Level Functions
#pragma ExecFunc-begin(mySample_step)
void mySample_step(void)
{

real_T rtb_UnitDelay;
rtb_UnitDelay = mySample_DWork.UnitDelay_DSTATE;
mySubsystem(rtb_UnitDelay, &mySample_B.mySubsystem;,
(rtP_mySubsystem *) &mySample_P.mySubsystem);

mySample_Y.Out1_o = mySample_B.mySubsystem.Gain;
mySample_DWork.UnitDelay_DSTATE = mySample_U.In1;

}
#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin
void mySample_initialize(boolean_T firstTime)
{

if (firstTime) {
rtmSetErrorStatus(mySample_M, (const char_T *)0);
{

((real_T*)&mySample_B.mySubsystem.Gain)[0] = 0.0;
}
mySample_DWork.UnitDelay_DSTATE = 0.0;
mySample_U.In1 = 0.0;
mySample_Y.Out1_o = 0.0;

}
mySample_DWork.UnitDelay_DSTATE = mySample_P.UnitDelay_X0;

}
#pragma InitTerminate-end

5-20

Examples of Generated Code with Memory Sections

Subsystem Function
Because the subsystem specifies a memory section for execution functions
that overrides that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, FAST_RAM)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}

If the subsystem had not defined its own memory section for execution
functions, but inherited that of the parent model, the subsystem code would
have looked like this:

/* File: mySubsystem.c */

#pragma ExecFunc-begin(mySubsystem)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}
#pragma ExecFunc-end(mySubsystem)

5-21

5 Memory Sections

5-22

6

Advanced Code Generation
Techniques

Introduction (p. 6-3) Overview of this chapter.

Code Generation with User-Defined
Data Types (p. 6-5)

How to map your own data type
definitions to Simulink built-in data
types.

Customizing the Target Build
Process with the STF_make_rtw
Hook File (p. 6-8)

Explains the build process hook
mechanism and how to use an
STF_make_rtw_hook.m hook file to
modify the build process.

Customizing the Target Build
Process with sl_customization.m
(p. 6-14)

Explains how to use the
Simulink customization file
sl_customization.m to register
installation-specific hook functions
to be invoked during the build
process.

Auto-Configuring Models for Code
Generation (p. 6-19)

How to use the
STF_make_rtw_hook.m hook
file and supporting utilities to
automate the configuration of a
model during the code generation
process.

Generating Efficient Code with
Optimized ERT Targets (p. 6-23)

Describes auto-configuring versions
of the ERT target that are optimized
for fixed-point or floating-point code
generation.

6 Advanced Code Generation Techniques

Custom File Processing (p. 6-32) Customizing generated code with
template files and the high-level
code template API.

Optimizing Your Model with
Configuration Wizard Blocks and
Scripts (p. 6-59)

How to use Configuration Wizard
blocks and scripts to configure and
optimize code generation options
quickly and easily.

Replacement of STF_rtw_info_hook
Mechanism (p. 6-71)

Use of the STF_make_rtw_hook
hook file mechanism for specifying
target-specific characteristics
for code generation has been
supplanted by the Hardware
Implementation pane of the
Configuration Parameters dialog.
Read this section if you have created
an STF_make_rtw_hook file for
use with a custom target, prior to
MATLAB Release 14.

Optimizing Task Scheduling for
RTOS Targets (p. 6-72)

Use the rmStepTask macro to
optimize task scheduling for RTOS
targets.

6-2

Introduction

Introduction
This chapter describes advanced code generation features and techniques
supported by Real-Time Workshop Embedded Coder. These features fall into
several categories:

• User-defined data types: How to use Simulink.NumericType,
Simulink.StructType and other data type objects to map your own data
type definitions to Simulink built-in data types.

• Model configuration: Several sections describe features that support
automatic (as opposed to manual) configuration of model options for code
generation. The information in each of these sections builds upon the
previous section.

- “Customizing the Target Build Process with the STF_make_rtw
Hook File” on page 6-8 describes the general mechanism for adding
target-specific customizations to the build process.

- “Auto-Configuring Models for Code Generation” on page 6-19 shows how
to use this mechanism (along with supporting utilities) to set model
options affecting code generation automatically.

- A similar mechanism is used by two special versions of the ERT target,
optimized for fixed-point and floating-point code generation. These are
described in “Generating Efficient Code with Optimized ERT Targets”
on page 6-23.

- “Optimizing Your Model with Configuration Wizard Blocks and
Scripts” on page 6-59 describes a simpler approach to automatic model
configuration. A library of Configuration Wizard blocks and scripts is
provided to let you configure models quickly for common scenarios; you
can also create your own scripts with minimal M-file programming.

• Custom code generation: These features let you directly customize
generated code by creating template files that are invoked during the
TLC code generation process. Basic knowledge of TLC is required to use
these features.

- “Custom File Processing” on page 6-32 describes a flexible and powerful
TLC API that lets you emit custom code to any generated file (including
both the standard generated model files and separate code modules).

6-3

6 Advanced Code Generation Techniques

- “Generating Custom File Banners” on page 6-53 describes a simple
way to generate file banners (useful for inserting your organization’s
copyrights and other common information into generated files).

• Backward compatibility issues: Read “Optimizing Your Model with
Configuration Wizard Blocks and Scripts” on page 6-59 if you have created
an STF_rtw_info_hook file for use with a custom target, prior to MATLAB
Release 14. The STF_rtw_info_hook hook file mechanism for specifying
target-specific characteristics for code generation has been supplanted by
the simpler and more powerful Hardware Implementation pane of the
Configuration Parameters dialog.

6-4

Code Generation with User-Defined Data Types

Code Generation with User-Defined Data Types
Real-Time Workshop Embedded Coder supports use of user-defined data type
objects in code generation. These include objects of the following classes:

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

• Simulink.StructType

For information on the properties and usage of these data object classes,
see Simulink.AliasType, Simulink.Bus, Simulink.NumericType, and
Simulink.StructType in the “Data Object Classes” section of the Simulink
Reference documentation. For general information on creating and using
data objects, see the “Working with Data Objects” section of the Simulink
documentation

In code generation, you can use user-defined data objects to

• Map your own data type definitions to Simulink built-in data types, and
specify that your data types are to be used in generated code.

• Optionally, generate #include directives specifying your own header files,
containing your data type definitions. This technique lets you use legacy
data types in generated code.

In general, code generated from user-defined data objects conforms to the
properties and attributes of the objects as defined for use in simulation.
When generating code from user-defined data objects, the name of the object
is the name of the data type that is used in the generated code. Exception:
for Simulink.NumericType objects whose IsAlias property is false, the
name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

Note The names of data types defined using Simulink.AliasType objects are
preserved in the generated code only for installations licensed for Real-Time
Workshop Embedded Coder.

6-5

6 Advanced Code Generation Techniques

Specifying Type Definition Location
When a model uses Simulink.DataType and Simulink.Bus objects,
corresponding typedefs are needed in code. Both Simulink.DataType and
Simulink.Bus objects have a HeaderFile property that controls the location
of the object’s typedef. Setting a HeaderFile is optional and affects code
generation only.

Omitting a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is left empty, a generated typedef for the object appears in the generated file
model_types.h.

Example. For a Simulink.NumericType object named myfloat with a
Category of double and no HeaderFile property specified, model_types.h in
the generated code contains:

typedef real_T myfloat;

Specifying a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is set to a string value,

• The string must be the name of a header file that contains a typedef for
the object.

• The generated file model_types.h contains a #include that gives the
header file name.

You can use this technique to include legacy or other externally created
typedefs in generated code. When the generated code compiles, the specified
header file must be accessible on the build process include path.

6-6

Code Generation with User-Defined Data Types

HeaderFile Property Syntax. The HeaderFile property should include the
desired preprocessor delimiter ("" or '<>'), as in the following examples.

This example:

myfloat.HeaderFile = '<legacy_types.h>'

generates the directive:

#include <legacy_types.h>

This example:

myfloat.HeaderFile = '"legacy_types.h>"'

generates the directive:

#include "legacy_types.h"

Using User-Defined Data Types for Code Generation
To specify and use user-defined data types for code generation:

1 Create a user-defined data object and configure its properties, as described
in the “Working with Data Objects” section of the Simulink documentation.

2 If you specified the HeaderFile property, copy the header file to the
appropriate directory.

3 Set the output data type of selected blocks in your model to the user-defined
data object. To do this, set the Data type parameter of the block to
Specify with dialog. Then, enter the object name in the Output data
type parameter.

4 The specified output data type propagates through the model and variables
of the user-defined type are declared as required in the generated code.

6-7

6 Advanced Code Generation Techniques

Customizing the Target Build Process with the
STF_make_rtw Hook File

The build process lets you supply optional hook files that are executed at
specified points in the code-generation and make process. You can use hook
files to add target-specific actions to the build process.

This section describes an important M-file hook, generically referred to as
STF_make_rtw_hook.m, where STF is the name of a system target file, such as
ert or mytarget. This hook file implements a function, STF_make_rtw_hook,
that dispatches to a specific action, depending on the hookMethod argument
passed in.

The build process automatically calls STF_make_rtw_hook, passing in the
correct hookMethod argument (as well as other arguments described below).
You need to implement only those hook methods that your build process
requires.

File and Function Naming Conventions
To ensure that STF_make_rtw_hook is called correctly by the build process,
you must ensure that the following conditions are met:

• The STF_make_rtw_hook.m file is on the MATLAB path.

• The filename is the name of your system target file (STF), appended to
the string _make_rtw_hook.m. For example, if you were generating code
with a custom system target file mytarget.tlc, you would name your
STF_make_rtw_hook.m file to mytarget_make_rtw_hook.m. Likewise, the
hook function implemented within the file should follow the same naming
convention.

• The hook function implemented in the file follows the function prototype
described in the next section.

6-8

Customizing the Target Build Process with the STF_make_rtw Hook File

STF_make_rtw_hook.m Function Prototype and
Arguments
The function prototype for STF_make_rtw_hook is

function STF_make_rtw_hook(hookMethod, modelName, rtwRoot, templateMakefile,

buildOpts, buildArgs)

The arguments are defined as:

• hookMethod: String specifying the stage of build process from which the
STF_make_rtw_hook function is called. The flowchart below summarizes the
build process, highlighting the hook points. Valid values for hookMethod
are 'entry', 'before_tlc', 'after_tlc', 'before_make', 'after_make',
and 'exit'. The STF_make_rtw_hook function dispatches to the relevant
code with a switch statement.

��������������	
��	�
���	���������

�������
������
�����������

�������	��������

������������	� ������

�������	���	� ������

������������
���������

�������	���
���������

������!�	������

�	��	�"�#$%�

"���&��
��#���
����'����� �	���

(���	������������ 	���

$�����	�� ���

����

%���"�#$%�

)�'������
	� ����������	���
 �

���

6-9

6 Advanced Code Generation Techniques

• rtwRoot: Reserved.

• modelName: String specifying the name of the model. Valid at all stages
of the build process.

• templateMakefile: Name of template makefile.

• buildOpts: A MATLAB structure containing the fields described in the list
below. Valid for the 'before_make', 'after_make', and 'exit' stages
only. The buildOpts fields are

- modules: Character array specifying a list of additional files that need
to be compiled.

- codeFormat: Character array containing code format specified for the
target. (ERT-based targets must use the 'Embedded-C' code format.)

- noninlinedSFcns: Cell array specifying list of noninlined S-functions in
the model.

- compilerEnvVal: String specifying compiler environment variable value
(for example, C:\Applications\Microsoft Visual).

• buildArgs: Character array containing the argument to make_rtw. When
you invoke the build process, buildArgs is copied from the argument
string (if any) following "make_rtw" in the Make command field of the
Real-Time Workshop pane of the Configuration Parameters dialog.

6-10

Customizing the Target Build Process with the STF_make_rtw Hook File

The make arguments from the Make command field in the figure above,
for example, generate the following:

% make -f untitled.mk VAR1=0 VAR2=4

6-11

6 Advanced Code Generation Techniques

Applications for STF_make_rtw_hook.m
An enumeration of all possible uses for STF_make_rtw_hook.m is beyond the
scope of this document. However, this section provides some suggestions of
how you might apply the available hooks.

In general, you can use the 'entry' hook to initialize the build process
before any code is generated, for example to change or validate settings. One
application for the 'entry' hook is to rerun the auto-configuration script that
initially ran at target selection time to compare model parameters before and
after the script executes for validation purposes.

The other hook points, 'before_tlc', 'after_tlc', 'before_make',
'after_make', and 'exit', are useful for interfacing with external tool
chains, source control tools, and other environment tools.

For example, you could use the STF_make_rtw_hook.m file at any stage after
'entry' to obtain the path to the build directory. At the 'exit' stage, you
could then locate generated code files within the build directory and check
them into your version control system.

Note that the build process temporarily changes the MATLAB working
directory to the build directory for stages 'before_make', 'after_make',
and 'exit'. Your STF_make_rtw_hook.m file should not make incorrect
assumptions about the location of the build directory. You can obtain the
path to the build directory anytime after the 'entry' stage. In the following
code example, the build directory pathname is returned as a string to the
variable buildDirPath.

makertwObj = get_param(gcs, 'MakeRTWSettingsObject');
buildDirPath = getfield(makertwObj, 'BuildDirectory');

6-12

Customizing the Target Build Process with the STF_make_rtw Hook File

Using STF_make_rtw_hook.m for Your Build
Procedure
To create a custom STF_make_rtw_hook hook file for your build procedure,
copy and edit the example ert_make_rtw_hook.m file (located in the
matlabroot\toolbox\rtw\targets\ecoder directory) as follows:

1 Copy ert_make_rtw_hook.m to a directory in the MATLAB path, and
rename it in accordance with the naming conventions described in “File
and Function Naming Conventions” on page 6-8. For example, to use it
with the GRT target grt.tlc, rename it to grt_make_rtw_hook.m.

2 Rename the ert_make_rtw_hook function within the file to match the
filename.

3 Implement the hooks that you require by adding code to the appropriate
case statements within the switch hookMethod statement. See
“Auto-Configuring Models for Code Generation” on page 6-19 for an
example.

6-13

6 Advanced Code Generation Techniques

Customizing the Target Build Process with
sl_customization.m

The Simulink customization file sl_customization.m is a mechanism that
allows you to use M-code to perform customizations of the standard Simulink
user interface. Simulink reads the sl_customization.m file, if present
on the MATLAB path, when it starts and the customizations specified in
the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

The sl_customization.m file can be used to register installation-specific hook
functions to be invoked during the Real-Time Workshop build process. The
hook functions that you register through sl_customization.m complement
System Target File (STF) hooks (described in “Customizing the Target Build
Process with the STF_make_rtw Hook File” on page 6-8) and post-code
generation commands (described in “Customizing Post Code Generation Build
Processing” in the Real-Time Workshop documentation).

The following figure shows the relationship between installation-level hooks
and the other available mechanisms for customizing the build process.

6-14

Customizing the Target Build Process with sl_customization.m

6-15

6 Advanced Code Generation Techniques

Registering Build Process Hook Functions Using
sl_customization.m
To register installation-level hook functions that will be invoked during
the Real-Time Workshop build process, you create an M-file function
called sl_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The sl_customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.RTWBuildCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following method for registering Real-Time
Workshop build process hook customizations:

• addUserHook(hObj, hookType, hook)

Registers the hook function M-script or M-function specified by hook for
the build process stage represented by hookType. The valid values for
hookType are 'entry', 'before_tlc', 'after_tlc', 'before_make',
'after_make', and 'exit'.

Your instance of the sl_customization function should use this method to
register installation-specific hook functions.

Simulink reads the sl_customization.m file when it starts. If you
subsequently change the file, you must restart Simulink or enter the following
command at the MATLAB command line to effect the changes:

sl_refresh_customizations

6-16

Customizing the Target Build Process with sl_customization.m

Variables Available for sl_customization.m Hook
Functions
The following variables are available for sl_customization.m hook functions
to use:

• modelName — The name of the Simulink model (valid for all stages)

• dependencyObject — An object containing the dependencies of the
generated code (valid only for the 'after_make' stage)

If a hook is an M-script, it can directly access the valid variables. If a hook is
an M-function, it can pass the valid variables as arguments to the function.
For example:

hObj.addUserHook('after_make', 'afterMakeFunction(modelName,dependencyObject);');

Example Build Process Customization Using
sl_customization.m
The sl_customization.m file shown in Example 1: sl_customization.m
for Real-Time Workshop Build Process Customizations on page 6-17
uses the addUserHook method to specify installation-specific build
process hooks to be invoked at the 'entry' and 'after_tlc' stages of
the Real-Time Workshop build. For the hook function source code, see
Example 2: CustomRTWEntryHook.m on page 6-18 and Example 3:
CustomRTWPostProcessHook.m on page 6-18.

Example 1: sl_customization.m for Real-Time Workshop Build
Process Customizations

function sl_customization(cm)

% Register user customizations

% Get default (factory) customizations

hObj = cm.RTWBuildCustomizer;

% Register Real-Time Workshop build process hooks

hObj.addUserHook('entry', 'CustomRTWEntryHook(modelName);');

hObj.addUserHook('after_tlc', 'CustomRTWPostProcessHook(modelName);');

end

6-17

6 Advanced Code Generation Techniques

Example 2: CustomRTWEntryHook.m

function [str, status] = CustomRTWEntryHook(modelName)

str =sprintf('Custom entry hook for model ''%s.''',modelName);

disp(str)

status =1;

Example 3: CustomRTWPostProcessHook.m

function [str, status] = CustomRTWPostProcessHook(modelName)

str =sprintf('Custom post process hook for model ''%s.''',modelName);

disp(str)

status =1;

If you include the above three files on the MATLAB path of the Simulink
installation that you want to customize, the coded hook function messages
will appear in the displayed output for Real-Time Workshop builds. For
example, if you open the ERT-based model rtwdemo_udt, open the Real-Time
Workshop pane of the Configuration Parameters dialog or Model Explorer,
and click the Build button to initiate a Real-Time Workshop build, the
following messages are displayed:

>> rtwdemo_udt

Starting Real-Time Workshop build procedure for model: rtwdemo_udt

Custom entry hook for model 'rtwdemo_udt.'

Custom post process hook for model 'rtwdemo_udt.'

Successful completion of Real-Time Workshop build procedure for model: rtwdemo_udt

>>

6-18

Auto-Configuring Models for Code Generation

Auto-Configuring Models for Code Generation
Traditionally, model parameters are configured manually prior to code
generation. It is now possible to automate the configuration of all (or selected)
model parameters at target selection time and at the beginning of the code
generation process. Auto-configuration is performed initially when you use the
Real-Time Workshop pane of the Configuration Parameters dialog to select
an auto-configuration target. Auto-configuration additionally is run at the
'entry' hook point of the STF_make_rtw_hook.m hook file. By automatically
configuring a model in this way, you can avoid manually configuring models.
This saves time and eliminates potential errors. Note that you can direct the
automatic configuration process to save existing model settings before code
generation and restore them afterwards, so that a user’s manually chosen
options are not disturbed.

Utilities for Accessing Model Configuration Properties
Simulink provides two M-file utilities, set_param and get_param that you can
use with the STF_make_rtw_hook.m hook file to automate the configuration of
a model during the code generation process. These utilities let you configure
all code-generation options relevant to Simulink, Stateflow, Real-Time
Workshop, and Real-Time Workshop Embedded Coder.

Using set_param
The set_param utility can be used to assign values to model parameters, to
backup and restore model settings, and to display information about model
options.

To assign an individual model parameter value, pass in the model name and a
parameter name/parameter value pair, as in the following examples:

set_param('model_name', 'SolverMode', 'Auto')
set_param('model_name', 'GenerateSampleERTMain', 'on')

You can also assign multiple parameter name/parameter value pairs, as in
the following example:

set_param('model_name', 'SolverMode', 'Auto', 'RTWInlineParameters', 'off')

6-19

6 Advanced Code Generation Techniques

Note that the parameter names used by the set_param function are not
always the same as the model parameter labels seen on the Configuration
Parameters dialog. For a list of parameters that you can specify and their
Configuration Parameters mapping, see the “Configuration Parameter
Reference” in the Real-Time Workshop documentation.

Automatic Model Configuration Using
ert_make_rtw_hook
As an example of automatic model configuration, consider the example
hook file, ert_make_rtw_hook.m. This file invokes the function
ert_auto_configuration, which in turn calls a lower level function that sets
all parameters of the model using the set_param utility.

While reading this section, refer to the following files, (located in
matlabroot\toolbox\rtw\targets\ecoder):

• ert_make_rtw_hook.m

• ert_auto_configuration.m

• ert_config_opt.m

The ert_config_opt auto-configuration function is invoked first at
target selection time and then again at the 'entry' stage of the build
process. The following code excerpt from ert_make_rtw_hook.m shows
how ert_auto_configuration is called from the 'entry' stage. At the
'exit' stage, the previous model settings are restored. Note that the
ert_auto_configuration call is made within a try/catch block so that in
the event of a build error, the model settings are also restored.

switch hookMethod

case 'entry'

% Called at start of code generation process (before anything happens.)

% Valid arguments at this stage are hookMethod, modelName, and buildArgs.

disp(sprintf(['\n### Starting Real-Time Workshop build procedure for ', ...

'model: %s'],modelName));

option = LocalParseArgList(buildArgs);

if ~strcmp(option,'none')

6-20

Auto-Configuring Models for Code Generation

try

ert_unspecified_hardware(modelName);

cs = getActiveConfigSet(modelName);

cscopy = cs.copy;

ert_auto_configuration(modelName,option);

locReportDifference(cscopy, cs);

catch

% Error out if necessary hardware information is missing or

% there is a problem with the configuration script.

error(lasterr)

end

end

...

case 'exit'

% Called at the end of the RTW build process. All arguments are valid

% at this stage.

disp(['### Successful completion of Real-Time Workshop build ',...

'procedure for model: ', modelName]);

end

The ert_auto_configuration function takes variable input arguments, the
first of which is interpreted according to the type of invocation.

• The first argument is either a string specifying a model name, for 'entry'
hook invocation, or a configuration set handle, for target selection
invocation.

• The second argument is a string specifying a configuration mode, which
is extracted from the buildArgs argument to ert_make_rtw_hook.m
(see “STF_make_rtw_hook.m Function Prototype and Arguments” on
page 6-9). In the example implementation, the configuration mode is
either 'optimized_floating_point' or 'optimized_fixed_point'. The
following code excerpt from ert_config_opt.m shows a typical use of this
argument to make a configuration decision:

if strcmp(configMode,'optimized_floating_point')
set_param(cs,'PurelyIntegerCode','off');

elseif strcmp(configMode,'optimized_fixed_point')
set_param(cs,'PurelyIntegerCode','on');

end

6-21

6 Advanced Code Generation Techniques

ert_make_rtw_hook Limitation
The code that you specify to be executed during the build process using the
ert_make_rtw_hook mechanism cannot include a cd (change directory)
command. For example, you cannot use cd in 'entry' hook code to set the
build directory.

Using the Auto-Configuration Utilities
To use the auto-configuration utilities during your target selection and make
processes as described above:

1 Set up the example ert_make_rtw_hook.m as your STF_make_rtw_hook
file (see “Customizing the Target Build Process with the STF_make_rtw
Hook File” on page 6-8).

2 Reconfigure the set_param calls within ert_config_opt.m to suit your
application needs.

6-22

Generating Efficient Code with Optimized ERT Targets

Generating Efficient Code with Optimized ERT Targets
To make it easier for you to generate code that is optimized for your target
hardware, Real-Time Workshop Embedded Coder provides three variants of
the ERT target. These targets are based on a common system target file,
ert.tlc. They are displayed in the System Target File Browser as shown in
the figure below.

The ERT target variants differ with respect to:

• Whether or not they auto-configure for optimized code generation options
during the target selection and code generation processes.

• Whether or not they require specification of target hardware characteristics
prior to code generation. Target hardware characteristics are configured
with the options in the Hardware Implementation pane of the
Configuration Parameters dialog. (See the “Hardware Implementation
Pane” section of the Simulink documentation for full details on the
Hardware Implementation pane).

The following sections describe the ERT target variants, and how to select
and use the optimized ERT targets.

6-23

6 Advanced Code Generation Techniques

Default ERT Target
The default ERT target is listed in the System Target File Browser as

Real-Time Workshop Embedded Coder (no auto configuration)

The Real-Time Workshop documentation refers to this target as the ERT
target.

This target does not invoke an auto-configuration utility. Specification of
target hardware characteristics is optional (although strongly recommended).

Optimized Fixed-Point ERT Target
The optimized fixed-point ERT target is listed in the System Target File
Browser as

Real-Time Workshop Embedded Coder (auto configures for optimized fixed-point code)

Select this target to optimize for fixed-point code generation.

The optimized fixed-point ERT target passes in the command
optimized_fixed_point=1 to the target selection process, and also to the
build process with the Make command field of the Real-Time Workshop
pane of the Configuration Parameters dialog. This in turn invokes the M-file
ert_config_opt.m, which auto-configures the model. The auto-configuration
process overrides the model settings, informing users with a message in the
MATLAB command window.

You can, if desired, customize the option settings in the auto-configuration file,
file, ert_config_opt.m. See “Auto-Configuring Models for Code Generation”
on page 6-19 for a complete description of the auto-configuration mechanism.

6-24

Generating Efficient Code with Optimized ERT Targets

The optimized fixed-point ERT target requires specification of target
hardware characteristics prior to code generation. Before generating code, you
should select the desired Device type (or define a Custom device type) in the
upper panel of the Hardware Implementation pane of the Configuration
Parameters dialog, and set the other properties appropriately for your target.
In the figure below, the Device type field is configured for the Infineon C166x
and XC16x microprocessor family.

6-25

6 Advanced Code Generation Techniques

If the Device type field is set to Unspecified, an error message (similar
to that in the figure below) is displayed at the start of the code generation
process.

Optimized Floating-Point ERT Target
The optimized floating-point ERT target is listed in the System Target File
Browser as

Real-Time Workshop Embedded Coder (auto configures for optimized floating-point code)

Select this target to optimize for floating-point code generation.

The optimized floating-point ERT target passes in the command
optimized_floating_point=1 to the target selection process, and also to the
build process with the Make command field of the Real-Time Workshop
pane of the Configuration Parameters dialog. This in turn invokes the M-file
ert_config_opt.m, which auto-configures the model. The auto-configuration
process overrides the model settings, informing users with a message in the
MATLAB command window.

6-26

Generating Efficient Code with Optimized ERT Targets

You can, if desired, customize the option settings in the auto-configuration file,
file, ert_config_opt.m. See “Auto-Configuring Models for Code Generation”
on page 6-19 for a complete description of the auto-configuration mechanism.

The optimized floating-point ERT target requires specification of target
hardware characteristics prior to code generation. Before generating code, you
should select the desired Device type (or define a Custom device type) in the
upper panel of the Hardware Implementation pane of the Configuration
Parameters dialog, and set the other properties appropriately for your target.
In the figure below, the Device type field is configured for the Motorola
PowerPC family of microprocessors.

6-27

6 Advanced Code Generation Techniques

If the Device type field is set to Unspecified, an error message (similar
to that in the figure below) is displayed at the start of the code generation
process.

Using the Optimized ERT Targets
This section describes how to use the optimized ERT targets in code
generation.

Configuring Hardware Implementation Properties
Before using one of the optimized versions of the ERT targets, make sure that
you have specified the Hardware Implementation properties for the model’s
active configuration set correctly. If this is not done properly, an error message
displays at the start of the code generation process and the build terminates.

To avoid such problems, select the desired Device type (or define a Custom
device type) in the upper panel of the Hardware Implementation pane
of the Configuration Parameters dialog, and set the other properties
appropriately for your target (see “Optimized Fixed-Point ERT Target” on
page 6-24 and “Optimized Floating-Point ERT Target” on page 6-26). Do not
leave the Device type unspecified.

6-28

Generating Efficient Code with Optimized ERT Targets

Note that if your model was created prior to MATLAB Release 14 and has
not yet been updated, the Device type defaults to Unspecified, and the
Emulation hardware properties (in the lower section of the Hardware
Implementation pane) are in an undefined state. This condition is
indicated by the presence of a button labeled Configure current execution
hardware device, as shown in this figure.

In this case you should click the button to set the Emulation hardware
properties to a valid (default) state, and save the model.

6-29

6 Advanced Code Generation Techniques

Generating Code
To generate code using one of the optimized ERT targets:

1 From the Real-Time Workshop pane of the Configuration Parameters
dialog or Model Explorer, open the System Target File Browser and select
the desired target. This figure shows the browser with the optimized
fixed-point ERT target selected.

2 When you click Apply or OK to apply the target selection, the
auto-configuration code executes. This is reported in a message similar
to the following:

*** Auto configuring 'optimized_fixed_point' for model 'untitled' as specified by:

ert_config_opt.m

*** Overwriting model settings if they do not yield optimized code.

3 Initiate the build process.

4 If your model’s Hardware Implementation parameters are not
configured correctly, an error message is displayed. If the error appears, see
“Configuring Hardware Implementation Properties” on page 6-28 to learn
how to correct the problem, and then retry Step 3.

5 During code generation, the auto-configuration code executes a second time,
and the auto-configuration message displayed in Step 2 appears again.

6-30

Generating Efficient Code with Optimized ERT Targets

6 Other than the auto-configuration messages, the build process executes
normally, reporting the usual progress and completion messages.

6-31

6 Advanced Code Generation Techniques

Custom File Processing
This section describes Real-Time Workshop Embedded Coder custom file
processing (CFP) features. Custom file processing simplifies generation of
custom source code by letting you

• Generate virtually any type of source (.c or .cpp) or header (.h) file. Using
a custom file processing template (CFP template), you can control how code
is emitted to the standard generated model files (for example, model.c or
.cpp, model.h) or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs, functions,
and more). Your CFP template can emit code (for example, functions),
directives (such as #define or #include statements), or comments into
each section as required.

• Generate custom file banners (comment sections) at the start and end of
generated code files.

• Generate code to call model functions such as model_initialize,
model_step, and so on.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

Custom File Processing Components
The custom file processing features discussed in this section are based on the
following interrelated components:

• Code generation template (CGT) files: A CGT file defines the top-level
organization and formatting of generated code. CGT files are described in
“Code Generation Template (CGT) Files” on page 6-35.

• The code template API: a high-level Target Language Compiler (TLC) API
that provides functions that let you organize code into named sections
and subsections of generated source and header files. The code template
API also provides utilities that return information about generated files,
generate standard model calls and perform other useful functions. See
“Code Template API Summary” on page 6-50.

6-32

Custom File Processing

• Custom file processing (CFP) templates: A CFP template is a TLC file that
manages the process of custom code generation. The primary purpose of a
CFP template is to assemble code to be generated into buffers, and to call
the code template API to emit the buffered code into specified sections of
generated source and header files. A CFP template interacts with a CGT
file, which defines the ordering of major sections into which code is emitted.
CFP templates and their applications are described in “Using Custom File
Processing (CFP) Templates” on page 6-39.

Understanding of TLC programming is required to use CFP templates. See
the Target Language Compiler document to learn the basics.

Custom File Processing User Interface Options
Use of custom file processing features requires creation of CGT files and/or
CFP templates. Usually, these files are based on default templates provided
by Real-Time Workshop Embedded Coder. Once you have created your
templates, you must integrate them into the code generation process.

The Templates pane of the Real-Time Workshop properties of a
model configuration set lets you select and edit CGT files and CFP
templates, and specify their use in the code generation process. Real-Time
Workshop/Templates Pane on page 6-34 shows this pane, with all options
configured for their defaults.

6-33

6 Advanced Code Generation Techniques

Real-Time Workshop/Templates Pane

The options related to custom file processing are:

• The Source file (.c) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use
when generating source (.c or .cpp) files. This file must be located on
the MATLAB path. By default, the code template for source files is
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

• The Header file (.h) template field in the Code templates and
Data templates sections. This field specifies the name of a CGT file
to use when generating header (.h) files. This file must be located on
the MATLAB path. By default, the code template for source files is
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

Each of these fields has associated Browse and Edit buttons. Browse lets
you navigate to and select an existing CFP template or CGT file. Edit
opens the specified CFP template into the MATLAB editor, where you can
customize it.

• The File customization template edit field in the Custom templates
section. This field specifies the name of a CFP template file to use when

6-34

Custom File Processing

generating code files. This file must be located on the MATLAB path. The
default CFP template is example_file_process.tlc.

Code Generation Template (CGT) Files
CGT files have a number of applications:

• The simplest application is generation of custom file banners (comments
sections) in code files. To do this, no knowledge of the details of the CGT file
structure is required; see “Generating Custom File Banners” on page 6-53.

• Some of the advanced features described in the Module Packaging Features
document utilize CGT files. Refer to that document for information.

• When generating custom code using a CFP template, a CGT file is required.
Correct use of CFP templates requires understanding of the CGT file
structure, although in many cases it is possible to use the default CGT file
without modification.

Default CGT file
Real-Time Workshop Embedded Coder provides a default CGT file:
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

You should base your custom CGT files on the default file.

CGT File Structure
A CGT file consists of three sections:

Header Section. This section is optional. It contains comments and tokens
for use in generating a custom header banner. “Generating Custom File
Banners” on page 6-53 gives details on custom banner generation.

Code Insertion Section. This section is required. It contains tokens that
define an ordered partitioning of the generated code into a number of sections
(such as Includes and Defines sections). Tokens have the form

%<SectionName>

For example,

%<Includes>

6-35

6 Advanced Code Generation Techniques

Real-Time Workshop Embedded Coder defines a minimal set of tokens that
are required for the generation of C or C++ source or header code. These are
built-in tokens (see “Built-In Tokens and Sections” on page 6-36). You can
also define custom tokens and add them to the code insertion section (see
“Generating a Custom Section” on page 6-48.

Each token functions as a placeholder for a corresponding section of generated
code. The ordering of the tokens defines the order in which the corresponding
sections appear on the generated code. The presence of a token in the CGT file
does not guarantee that the corresponding section is generated. To generate
code into a given section, you must do so explicitly by calling the code template
API from a CFP template, as described in “Using Custom File Processing
(CFP) Templates” on page 6-39.

The CGT tokens define the high-level organization of generated code. Using
the code template API, you can partition each code section into named
subsections, as described in “Subsections” on page 6-38.

You can also insert C or C++ comments into the code insertion section,
between tokens. Such comments are inserted directly into the generated code.

Trailer Section. This section is optional. It contains comments and tokens for
use in generating a custom trailer banner. “Generating Custom File Banners”
on page 6-53 gives details on custom banner generation.

Built-In Tokens and Sections
The following code extract shows the code insertion section of the default
CGT file, showing the built-in tokens.

%% Required tokens. You can insert comments and other tokens in between them,

%% but do not change their order or remove them.

%%

%<Includes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

6-36

Custom File Processing

Note carefully the following requirements before creating or customizing a
CGT file:

• All the built-in tokens are required. None can be removed.

• Built-in tokens must appear in the order shown. The ordering is significant
because each successive section can have dependencies on previous sections.

• Only one token can appear per line.

• Tokens must not be repeated.

• Custom tokens can be added to the code insertion section, provided that the
previous requirements are not violated.

• Comments can be added to the code insertion section, provided that the
previous requirements are not violated.

Built-In CGT Tokens and Corresponding Code Sections on page 6-37
summarizes the built-in tokens and corresponding section names, and
describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token / Section
Name Description

Includes #include directives section

Defines #define directives section

Types typedef section. Typedefs can depend on any
previously defined type

Enums Enumerated types section

Definitions Place data definitions here (for example, double x =
3.0;)

6-37

6 Advanced Code Generation Techniques

Built-In CGT Tokens and Corresponding Code Sections (Continued)

Token / Section
Name Description

Declarations Data declarations (for example, extern double x;)

Functions C or C++ functions

Subsections
It is possible to define one or more named subsections for any section. Some of
the built-in sections have predefined subsections. These are summarized in
Subsections Defined for Built-In Sections on page 6-38.

It is important to note that the sections and subsections listed in Subsections
Defined for Built-In Sections on page 6-38 are emitted, in the order listed, to
the source or header file being generated.

The custom section feature lets you define sections in addition to those listed
in Subsections Defined for Built-In Sections on page 6-38. See “Generating a
Custom Section” on page 6-48 for information on how to do this.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A

Defines N/A

Types IntrinsicTypes Intrinsic typedef section. Intrinsic types are
those that depend only on intrinsic C or C++
types.

Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs
are those that depend only on intrinsic C or C++
types and on any typedefs previously defined in
the IntrinsicTypes section.

Types UserTop Any type of code can be placed in this section.
You can place code that has dependencies on the
previous sections here.

6-38

Custom File Processing

Subsections Defined for Built-In Sections (Continued)

Section Subsections Subsection Description

Types Typedefs typedef section. Typedefs can depend on any
previously defined type

Enums N/A

Definitions N/A

Declarations N/A

Functions C or C++ functions

Functions CompilerErrors #warning directives

Functions CompilerWarnings #error directives

Functions Documentation Documentation (comment) section

Functions UserBottom Any code can be placed in this section.

Using Custom File Processing (CFP) Templates
The files provided to support custom file processing are

• matlabroot\rtw\c\tlc\mw\codetemplatelib.tlc: A TLC function library
that implements the code template API. codetemplatelib.tlc also
provides the comprehensive documentation of the API in the comments
headers preceding each function.

• matlabroot\toolbox\rtw\targets\ecoder\example_file_process.tlc:
An example CFP template, which you should use as the starting point for
creating your own CFP templates. Guidelines and examples for creating a
CFP template are provided in “Generating Source and Header Files with a
CFP Template” on page 6-41.

• TLC files supporting generation of single-rate and multi-rate main program
modules (see “Customizing Main Program Module Generation” on page
6-46).

Once you have created a CFP template, you must integrate it into the code
generation process, using the File customization template edit field (see
“Custom File Processing User Interface Options” on page 6-33).

6-39

6 Advanced Code Generation Techniques

CFP Template Structure
A CFP template imposes a simple structure on the code generation process.
The template, in conjunction with a CGT file, partitions the code generated for
each file into a number of sections. These sections are summarized in Built-In
CGT Tokens and Corresponding Code Sections on page 6-37 and Subsections
Defined for Built-In Sections on page 6-38.

Code for each section is assembled in buffers and then emitted, in the order
listed, to the file being generated.

To generate a file section, your CFP template must first assemble the code
to be generated into a buffer. Then, to emit the section, your template calls
the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

• fileH is a file reference to a file being generated.

• section is the code section or subsection to which code is to be emitted.
section must be one of the section or subsection names listed in Subsections
Defined for Built-In Sections on page 6-38.

Determine the section argument as follows:

- If Subsections Defined for Built-In Sections on page 6-38 defines no
subsections for a given section, use the section name as the section
argument.

- If Subsections Defined for Built-In Sections on page 6-38 defines one or
more subsections for a given section, you can use either the section name
or a subsection name as the section argument.

- If you have defined a custom token denoting a custom section, do not
call LibSetSourceFileSection. Special API calls are provided for custom
sections (see “Generating a Custom Section” on page 6-48).

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your
template need only generate the sections you require in a particular file.

6-40

Custom File Processing

Note that no legality or syntax checking is performed on the custom code
within each section.

The next section, “Generating Source and Header Files with a CFP Template”
on page 6-41, provides typical usage examples.

Generating Source and Header Files with a CFP
Template
This section walks you through the process of generating a simple source
(.c or .cpp) and header (.h) file using the example CFP template. Then, it
examines the template and the code generated by the template.

The example CFP template, example_file_process.tlc, demonstrates some
of the capabilities of the code template API, including

• Generation of simple source (.c or .cpp) and header (.h) files

• Use of buffers to generate file sections for includes, functions, and so on

• Generation of includes, defines, and so on into the standard generated
files (for example, model.h)

• Generation of a main program module

Generating Code with a CFP Template
This section sets up a CFP template and configures a model to use the
template in code generation. The template generates (in addition to the
standard model files) a source file (timestwo.c or .cpp) and a header file
(timestwo.h).

You should follow the steps below to become acquainted with the use of CFP
templates:

1 Copy the example CFP template,
matlabroot\toolbox\rtw\targets\ecoder\example_file_process.tlc,
to a directory of your choice. This directory should be located outside the
MATLAB directory structure (that is, it should not be under matlabroot.)
Note that this directory must be on the MATLAB path, or on the TLC path.

6-41

6 Advanced Code Generation Techniques

It is good practice to locate the CFP template in the same directory as your
system target file, which is guaranteed to be on the TLC path.

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

3 Open test_example_file_process.tlc into the MATLAB editor.

4 Uncomment the following line:

%%assign ERTCustomFileTest = TLC_TRUE

It should now read:

%assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template is
ignored in code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc
open, so you can refer to it later.

6 Open the ecdemo model.

7 Open the Simulink Model Explorer. Select the active configuration set of
the model, and open the Real-Time Workshop properties view of the
active configuration set.

8 Click on the Templates tab.

6-42

Custom File Processing

9 Configure the File customization template field as shown below. The
test_example_file_process.tlc file, which you previously edited, is
now specified as the CFP template.

10 Select the Generate code only option.

11 Click Apply.

12 Click Generate code. During code generation, notice the following
message on the MATLAB command window:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc
generates the main program module, overriding the default action of the
ERT target. This is explained in greater detail below.

13 The ecdemo model is configured to generate an HTML code generation
report. After code generation completes, view the report. Notice that the
Generated Source Files list contains the files timestwo.c or .cpp,
timestwo.h, and ert_main.c or .cpp. These files were generated by the

6-43

6 Advanced Code Generation Techniques

CFP template. The next section examines the template to learn how this
was done.

14 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to
them in the next section.

Analysis of the Example CFP Template and Generated Code
This section examines excerpts from test_example_file_process.tlc
and some of the code it generates. You should refer to the comments in
codetemplatelib.tlc while reading the discussion below.

Generating Code Files. Source (.c or .cpp) and header (.h) files are created
by calling LibCreateSourceFile, as in the following excerpts:

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

...

%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers. The code template API lets you partition the
code generated to each file into sections, tagged as Definitions, Includes,
Functions, Banner, and so on. You can append code to each section as many
times as required. This technique gives you a great deal of flexibility in the
formatting of your custom code files.

The available file sections, and the order in which they are emitted to the
generated file, are summarized in Subsections Defined for Built-In Sections
on page 6-38.

For each section of a generated file, use %openfile and %closefile to store
the text for that section in temporary buffers. Then, to write (append) the
buffer contents to a file section, call LibSetSourceFileSection, passing
in the desired section tag and file reference. For example, the following
code uses two buffers (tmwtypesBuf and tmpBuf) to generate two sections
(tagged "Includes" and "Functions") of the source file timestwo.c or .cpp
(referenced as cFile):

6-44

Custom File Processing

%openfile tmwtypesBuf

#include "tmwtypes.h"

%closefile tmwtypesBuf

%<LibSetSourceFileSection(cFile,"Includes",tmwtypesBuf)>

%openfile tmpBuf

/* Times two function */
real_T timestwofcn(real_T input) {

return (input * 2.0);
}

%closefile tmpBuf

%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#include "tmwtypes.h"

/* Times two function */
real_T timestwofcn(real_T input) {

return (input * 2.0);
}

Adding Code to Standard Generated Files. The timestwo.c or .cpp file
generated in the previous example was independent of the standard code files
generated from a model (for example, model.c or .cpp, model.h, and so on).
You can use similar techniques to generate custom code within the model
files. The code template API includes functions to obtain the names of the
standard models files and other model-related information. The following
excerpt calls LibGetMdlPubHdrBaseName to obtain the correct name for the
model.h file. It then obtains a file reference and generates a definition in the
Defines section of model.h:

%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName()

6-45

6 Advanced Code Generation Techniques

%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%openfile tmpBuf

#define ACCELERATION 9.81

%closefile tmpBuf

%<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated ecdemo.h file to see the generated #define directive.

Customizing Main Program Module Generation. Normally, the ERT
target follows the Generate an example main program and Target
operating system options to determine how to generate an ert_main.c or
.cpp module (if any). You can use a CFP template to override the normal
behavior and generate a main program module customized for your target
environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by
a single TLC function, FcnSingleTaskingMain.

• bareboard_mrmain.tlc: TLC code to generate a multi-rate main program
module for a bareboard target environment. Code is generated by a single
TLC function, FcnMultiTaskingMain.

In the example CFP template, the following code generates either a single- or
multi-tasking ert_main.c or .cpp module. The logic depends on information
obtained from the code template API calls LibIsSingleRateModel and
LibIsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

%if LibIsSingleRateModel() || LibIsSingleTasking()

%include "bareboard_srmain.tlc"

%<FcnSingleTaskingMain()>

%else

%include "bareboard_mrmain.tlc"

6-46

Custom File Processing

%<FcnMultiTaskingMain()>

%endif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code
template API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default
generation of ert_main.c or .cpp. The TLC variable GenerateSampleERTMain
controls generation of ert_main.c or .cpp. You can directly force
this variable to TLC_FALSE. The examples bareboard_mrmain.tlc and
bareboard_srmain.tlc use this technique, as shown in the following excerpt
from bareboard_srmain.tlc.

%if GenerateSampleERTMain
%assign CompiledModel.GenerateSampleERTMain = TLC_FALSE
%warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCallback function for your target.
A SelectCallback function is an M function that is triggered during model
loading, and also when the user selects a target with the System Target File
browser. Your SelectCallback function should deselect and disable the
Generate an example main program option. This prevents the TLC
variable GenerateSampleERTMain from being set to TLC_TRUE.

See the “rtwgensettings Structure” section of the Developing Embedded
Targets document for information on creating a SelectCallback function.

The following code illustrates how to deselect and disable the Generate an
example main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

6-47

6 Advanced Code Generation Techniques

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach
rt_OneStep to a timer interrupt. It is expected that you will customize either
the generated code, the generating TLC code, or both. See “Guidelines for
Modifying the Main Program” on page 2-12 and “Guidelines for Modifying
rt_OneStep” on page 2-18 for further information.

Generating a Custom Section
You can define custom tokens in a CGT file and direct generated code into
an associated built-in section. This feature gives you additional control
over the formatting of code within each built-in section. For example, you
could add subsections to built-in sections that do not already define any
subsections. All custom sections must be associated with one of the built-in
sections: Includes, Defines, Types, Enums, Definitions, Declarations, or
Functions. To create custom sections, you must

• Add a custom token to the code insertion section of your CGT file.

• In your CFP file:

- Assemble code to be generated to the custom section into a buffer.

- Declare an association between the custom section and a built-in section,
with the code template API function LibAddSourceFileCustomSection.

- Emit code to the custom section with the code template API function
LibSetSourceFileCustomSection.

The following code excerpts illustrate the addition of a custom token and
section associated with the built-in Includes section.

First, the token Myincludes is added to the code insertion section of the CGT
file.

%<Includes>
%<Myincludes>
%<Defines>
%<Types>
%<Enums>

6-48

Custom File Processing

%<Definitions>
%<Declarations>
%<Functions>

In the CFP file, two include directives are generated into a buffer.

%openfile MyTmp
#include "moretables1.h"
#include "moretables2.h"
%closefile MyTmp

The following function call declares an association between the built-in
section Includes and the custom section Myincludes. In effect, Myincludes
is a subsection of Includes.

%<LibAddSourceFileCustomSection(modelC,"Includes","Myincludes")>

The following call to LibSetSourceFileCustomSection directs the
code in the MyTmp buffer to the desired section of the generated
file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

%<LibSetSourceFileCustomSection(modelC,"Myincludes",MyTmp) >

In the generated code, the include directives generated to the custom section
appear after other code directed to Includes.

#include "ecdemo.h"
#include "ecdemo_private.h"
#include "moretables1.h"
#include "moretables2.h"

Note that the placement of the custom token in this example is arbitrary. By
locating %<Myincludes> after %<Includes>, the CGT file ensures only that
the Myincludes code appear after Includes code.

6-49

6 Advanced Code Generation Techniques

Code Template API Summary
Code Template API Functions on page 6-50 summarizes the code template
API. See the source code in codetemplatelib.tlc for detailed information on
the arguments, return values, and operation of these calls.

Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files
(.c or .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model
file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetSourceFileFromIdx Returns a model file reference based on
its index. This is useful for a common
operation on all files, such as to set the
leading file banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “CFP
Template Structure” on page 6-40).

LibGetSourceFileSection Retrieves the contents of a file section. See
the code for LibSetSourceFileSection
for list of valid sections.

LibIndentSourceFile Indents a file with the c_indent utility
of Real-Time Workshop (from within the
TLC environment).

LibCallModelInitialize Returns code for calling the model’s
model_initialize function (valid for ERT
only).

LibCallModelStep Returns code for calling the model’s
model_step function (valid for ERT only).

6-50

Custom File Processing

Code Template API Functions (Continued)

Function Description

LibCallModelTerminate Returns code for calling the model’s
model_terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep Returns code for calling the model’s set
events function (valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT
only).

LibSetRTModelErrorStatus Returns the code to set the model error
status.

LibGetRTModelErrorStatus Returns the code to get the model error
status.

LibIsSingleRateModel Returns true if model is single rate and
false otherwise.

LibGetModelName Returns name of the model (no extension).

LibGetMdlSrcBaseName Returns the name of model’s main source
file (for example, model.c or .cpp).

LibGetMdlPubHdrBaseName Returns the name of model’s public header
file (for example, model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model’s
private header file (for example,
model_private.h).

LibIsSingleTasking Returns true if the model is configured for
singletasking execution.

LibWriteModelInput Returns the code to write to a particular
root input (that is, a model inport block).
(valid for ERT only).

LibWriteModelOutput Returns the code to write to a particular
root output (that is, a model outport block).
(valid for ERT only).

6-51

6 Advanced Code Generation Techniques

Code Template API Functions (Continued)

Function Description

LibWriteModelInputs Returns the code to write to root inputs
(that is, all model inport blocks). (valid for
ERT only)

LibWriteModelOutputs Returns the code to write to root outputs
(that is, all model outport blocks). (valid
for ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the directory into which a specified
source file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file.
The custom section must be associated
with one of the built-in (required)
sections: Includes, Defines, Types,
Enums, Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

LibGetSourceFileCustomSection Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateComplianceLevel This function must be called from your
CFP template before any other code
template API functions are called. Pass in
2 as the level argument.

6-52

Custom File Processing

Generating Custom File Banners
Using CGT files, you can specify custom file banners to be inserted into
generated code files. File banners are comment sections in the header and
trailer portions of a generated file. You can use these banners to add a
company copyright statement, specify a special version symbol for your
configuration management system, remove time stamps, and for many other
purposes. These banners can contain non US-ASCII characters, which are
propagated to the generated code.

The recommended technique for specifying file banners is to create a custom
CGT file with a customized banner section. During the build process, an
executable TLC file is created from the CGT file. This TLC file is then invoked
during the code generation process.

You do not need to be familiar with TLC programming to generate custom
banners. Generally, you simply need to modify example files supplied with
the ERT target.

Note Prior releases supported direct use of customized TLC file as banner
templates. These were specified with the Source file (.c) banner template
and Header file (.h) banner template options of the ERT target. Direct use
of a TLC file for this purpose is still supported for backward compatibility, but
you should now use CGT files for this purpose instead.

File banner generation is supported by the options in the Code templates
section of the Templates pane of the Real-Time Workshop properties of a
configuration set (shown in ERT Templates Options on page 6-54).

6-53

6 Advanced Code Generation Techniques

ERT Templates Options

The options related to file banner generation are

• Source file (.c) template: CGT file to use when generating source (.c or
.cpp) files. This file must be located on the MATLAB path.

• Header file (.h) template: CGT file to use when generating header (.h)
files. This file must be located on the MATLAB path. This can be the same
template specified in the Source file (.c) template field, in which case
identical banners are generated in source and header files.

By default, the code template for both source and header files is
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

• Each of these fields has associated Browse and Edit buttons. Browse lets
you navigate to and select an existing CGT file for use as a template. Edit
opens the specified file into the MATLAB editor, where you can customize it.

6-54

Custom File Processing

Creating a Custom File Banner Template
The recommended procedure for customizing a CGT for custom file banner
generation is to make a local copy of the default code template and edit it, as
follows:

1 Activate the configuration set you want to work with.

2 Open the Real-Time Workshop properties view of the active configuration
set.

3 Click on the Templates tab (see ERT Templates Options on page 6-54).

4 By default, the code template specified in the Source file
(.c) template and Header file (.h) template fields is
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

5 If you want to use a different template as your starting point, use the
Browse button to locate and select a CGT file.

6 Click the Edit button to open the CGT file into the MATLAB editor.

7 Save a local copy of the CGT file. Store the copy in a directory that is not
inside the MATLAB directory structure. Note that this directory must be
on the MATLAB path. If necessary, add the directory to the MATLAB path.

8 If you intend to use the CGT file in conjunction with a custom target, it is
good practice to locate the CGT file in a folder under your target’s root
directory.

9 It is also good practice to rename your local copy of the CGT file. When you
rename the CGT file, make sure to edit the associated Source file (.c)
template or Header file (.h) template field to match the new filename.

10 Edit and customize the CGT file as needed (See “Customizing a CGT File
for Custom Banner Generation” on page 6-56). Before exiting the MATLAB
editor, save your changes to the CGT file.

11 Click Apply to update the configuration set.

12 Save your model.

6-55

6 Advanced Code Generation Techniques

13 Generate code. Examine the generated source and/or header files to confirm
that they contain the banners specified by the template(s).

Customizing a CGT File for Custom Banner Generation
This section describes the sections of a CGT file you need to modify for custom
file banner generation. For a more detailed description of CGT files, see “Code
Generation Template (CGT) Files” on page 6-35.

Custom file banner generation requires modification of one or more of the
following CGT file sections:

• Header section: This section contains comments and tokens for
use in generating a header banner. The header banner precedes
any C or C++ code generated by the model. If the header section
is omitted, no header banner is generated. The following is
the default header section provided with the default CGT file,
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

%% Custom file banner (optional)

%%

/*

* File: %<FileName>

*

* Real-Time Workshop code generated for Simulink model %<ModelName>.

*

* Model version : %<ModelVersion>

* Real-Time Workshop file version : %<RTWFileVersion>

* Real-Time Workshop file generated on : %<RTWFileGeneratedOn>

* TLC version : %<TLCVersion>

* C source code generated on : %<SourceGeneratedOn>

*

* You can customize this banner by specifying a different template.

*/

• Trailer section: This section contains comments and tokens for use in
generating a trailer banner. The trailer banner follows any C or C++ code
generated by the model. If the trailer section is omitted, no trailer banner
is generated. The following is the default trailer section provided in the
default CGT file.

6-56

Custom File Processing

%% Custom file trailer (optional)

%%

/* File trailer for Real-Time Workshop generated code.

*

* You can customize this file trailer by specifying a different template.

*

* [EOF]

*/

The header and trailer sections typically use TLC variables (such as
%<ModelVersion>) as tokens. During code generation, tokens are replaced
with values in the generated code. See Summary of Tokens for File Banner
Generation on page 6-58 for a list of available tokens.

The following code excerpt shows a modified banner section based on the
default CGT. This template inserts a copyright notice into the banner.

%% Custom file banner (optional)

%%

/*

* File: %<FileName>

* ---

* Copyright 2003 ABC Corporation, Inc.

* ---

* Real-Time Workshop code generated for Simulink model %<ModelName>.

*

* Model version : %<ModelVersion>

* Real-Time Workshop file version : %<RTWFileVersion>

* Real-Time Workshop file generated on : %<RTWFileGeneratedOn>

* TLC version : %<TLCVersion>

* C source code generated on : %<SourceGeneratedOn>

*

*

*/

6-57

6 Advanced Code Generation Techniques

The following code excerpt shows an actual file banner generated from the
ecdemo model using the above template.

/*

* File: ecdemo.c

* ---

* Copyright 2003 ABC Corporation, Inc.

* ---

* Real-Time Workshop code generated for Simulink model ecdemo.

*

* Model version : 1.188

* Real-Time Workshop file version : 6.0 (R14 Prerelease) 13-Nov-2003

* Real-Time Workshop file generated on : Tue Nov 18 16:46:48 2003

* TLC version : 6.0 (Nov 15 2003)

* C source code generated on : Tue Nov 18 16:46:52 2003

*

*

*/

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"ecdemo.c"

FileType Either "source" or "header". Designates
whether generated file is a .c or .cpp file or an
.h file.

FileTag Given filenames file.c or .cpp and file.h, the
file tags are "file_c" and "file_h", respectively.

ModelName Name of generating model.

ModelVersion Version number of model.

RTWFileVersion Version number of model.rtw file

RTWFileGeneratedOn Timestamp of model.rtw file.

TLCVersion Version of Target Language Compiler

SourceGeneratedOn Timestamp of generated file

6-58

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Optimizing Your Model with Configuration Wizard Blocks
and Scripts

Real-Time Workshop Embedded Coder provides a library of Configuration
Wizard blocks and scripts to help you configure and optimize code generation
from your models quickly and easily.

The library provides four preset Configuration Wizard blocks, and a
Configuration Wizard block you can customize. These are shown in the figure
below.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, an M-file script executes and configures all parameters of
the model’s active configuration set without manual intervention. The preset
blocks configure the options optimally for one of the following cases:

• Fixed-point code generation with the ERT target

• Floating-point code generation with the ERT target

• Fixed/floating-point code generation with TLC debugging options enabled,
with the GRT target.

• Floating-point code generation with the GRT target

The Custom block is associated with an example M-file script that you can
adapt to your requirements.

6-59

6 Advanced Code Generation Techniques

You can also set up the Configuration Wizard blocks to invoke the build
process after configuring the model.

Configuration Wizards vs. Auto-Configuring Targets
Configuration Wizard scripts and auto-configuring targets offer two different
approaches to automatic model configuration. You need to consider issues of
complexity and the needs of your end users when choosing one or the other
approach.

Auto-configuring targets (described in “Auto-Configuring Models for Code
Generation” on page 6-19 and “Generating Efficient Code with Optimized
ERT Targets” on page 6-23) execute a back end configuration function (hook
file) during the code generation process. The auto-configuration function in
effect bypasses the options set in the model’s configuration set, which are
saved and restored transparently across the build process.

Configuration Wizards, on the other hand, execute a configuration script
independently from the code generation process. The Configuration Wizard
script actually changes the model’s active configuration set. These changes
are then visible in the GUI and can be saved with the model.

It is generally simpler to create a custom Configuration Wizard script than
to create a custom auto-configuring target. Creating a Configuration Wizard
script, in many cases, requires only simple modifications to an existing
template. Creating a custom auto-configuring target, on the other hand,
requires some knowledge of the internals of the build process.

Adding a Configuration Wizard Block to Your Model
This section describes how to add one of the preset Configuration Wizard
blocks to a model.

The Configuration Wizard blocks are available in the Real-Time Workshop
Embedded Coder block library. To use a Configuration Wizard block:

1 Open the model that you want to configure.

2 Open the Real-Time Workshop Embedded Coder library by typing the
command rtweclib.

6-60

Optimizing Your Model with Configuration Wizard Blocks and Scripts

3 The top level of the library is shown below.

4 Double-click the Configuration Wizards icon. The Configuration Wizards
sublibrary opens, as shown below.

6-61

6 Advanced Code Generation Techniques

5 Select the Configuration Wizard block you want to use and drag and
drop it into your model. In the figure below, the ERT (optimized for
fixed-point) Configuration Wizard block has been added to the model.

6 You can set up the Configuration Wizard block to invoke the build process
after executing its configuration script. If you do not want to use this
feature, skip to the next step.

If you want the Configuration Wizard block to invoke the build process,
right-click on the Configuration Wizard block in your model, and select
Mask Parameters... from the context menu. Then, select the Invoke
build process after configuration option, as shown below.

6-62

Optimizing Your Model with Configuration Wizard Blocks and Scripts

7 Click Apply, and close the Mask Parameters dialog.

Note You should not change the Configure the model for option, unless
you want to create a custom block and script. In that case, see “Creating a
Custom Configuration Wizard Block” on page 6-63.

8 Save the model.

9 You can now use the Configuration Wizard block to configure the model, as
described in the next section.

Using Configuration Wizard Blocks
Once you have added a Configuration Wizard block to your model, just
double-click the block. The script associated with the block automatically
sets all parameters of the active configuration set that are relevant to code
generation (including selection of the appropriate target). You can verify that
the options have changed by opening the Configuration Parameters dialog
and examining the settings.

If the Invoke build process after configuration option for the block was
selected, the script also initiates the code generation and build process.

Note that you can add more than one Configuration Wizard block to your
model. This provides a quick way to switch between configurations.

Creating a Custom Configuration Wizard Block
The Custom Configuration Wizard block is shipped with an associated
M-file script, rtwsampleconfig.m. The script is located in the directory
matlabroot/toolbox/rtw/rtw.

Both the block and the script are intended to provide a starting point for
customization. This section describes:

• How to create a custom Configuration Wizard block linked to a custom
script.

6-63

6 Advanced Code Generation Techniques

• Operation of the example script, and programming conventions and
requirements for a customized script.

• How to run a configuration script from the MATLAB command line
(without a block).

Setting Up a Configuration Wizard Block
This section describes how to set up a custom Configuration Wizard block and
link it to a script. If you want to use the block in more than one mode, it is
advisable to create a Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

1 Create a directory to store your custom script. This directory should not
be anywhere inside the MATLAB directory structure (that is, it should
not be under matlabroot).

The discussion below refers to this directory as /my_wizards.

2 Add the directory to the MATLAB path. Save the path for future sessions.

3 Copy the example script
(matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m)
to the /my_wizards directory you created in the previous steps. Then,
rename the script as desired. The discussion below uses the name
my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the
file and enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to verify that your custom block has
executed the script.

5 Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it.
Do this as follows:

6-64

Optimizing Your Model with Configuration Wizard Blocks and Scripts

1 Open the Real-Time Workshop Embedded Coder library and the
Configuration Wizards sublibrary, as described in “Adding a Configuration
Wizard Block to Your Model” on page 6-60.

2 Select New Library from the File menu of the Configuration Wizards
sublibrary window. An empty library window opens.

3 Select the Custom M-file block from the Configuration Wizards sublibrary
and drag and drop it into the empty library window.

4 To distinguish your custom block from the original, edit the Custom M-file
label under the block as desired.

5 Select Save as... from the File menu of the new library window; save the
library to the /my_wizards directory, under your library name of choice. In
the figure below, the library has been saved as my_button, and the block
has been labeled my_wizard M-file.

The next step is to link the custom block to the custom script:

1 Right-click on the block in your model, and select Mask Parameters from
the context menu. Notice that the Configure the model for menu set to
Custom. When Custom is selected, the Configuration function edit field
is enabled, so you can enter the name of a custom script.

2 Enter the name of your custom script into the Configuration function
field. (Do not enter the .m filename extension, which is implicit.) In the
figure below, the script name my_configscript has been entered into the

6-65

6 Advanced Code Generation Techniques

Configuration function field. This establishes the linkage between the
block and script.

3 Note that by default, the Invoke build process after configuration
option is deselected. You can change the default for your custom block by
selecting this option. For now, leave this option deselected.

4 Click Apply and close the Mask Parameters dialog.

5 Save the library.

6 Close the Real-Time Workshop Embedded Coder library and the
Configuration Wizards sublibrary. Leave your custom library open for use
in the next step.

6-66

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Now, test your block and script in a model. Do this as follows:

1 Open the vdp demo model by typing the command:

vdp

2 Open the Configuration Parameters dialog and view the Real-Time
Workshop options by clicking on the Real-Time Workshop entry in the
list in the left pane of the dialog.

3 Observe that the vdp demo is configured, by default, for the GRT target.
Close the Configuration Parameters dialog.

4 Select your custom block from your custom library. Drag and drop the block
into the vdp model.

5 In the vdp model, double-click your custom block.

6 In the MATLAB window, you should see the test message you previously
added to your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block successfully executed the script.

7 Reopen the Configuration Parameters dialog and view the Real-Time
Workshop options again. You should now see that the model is configured
for the ERT target.

Before applying further edits to your custom script, proceed to the next section
to learn about the operation and conventions of Configuration Wizard scripts.

6-67

6 Advanced Code Generation Techniques

Creating a Configuration Wizard Script
You should create your custom Configuration Wizard script by copying and
modifying the example script, rtwsampleconfig.m. This section provides
guidelines for modification.

The Configuration Function. The example script implements a single
function without a return value. The function takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information
about the model’s active configuration set. Simulink obtains this handle
and passes it in to the configuration function when the user double-clicks a
Configuration Wizard block.

Your custom script should conform to this prototype. Your code should use
cs as a “black box” object that transmits information to and from the active
configuration set, using the accessor functions described below.

Accessing Configuration Set Options. To set options or obtain option
values, use the Simulink set_param and get_param functions (if you are
unfamiliar with these functions, see the Simulink Reference document).

Option names are passed in to set_param and get_param as strings specifying
an internal option name. The internal option name is not always the same
as the corresponding option label on the GUI (for example, the Configuration
Parameters dialog). The example configuration accompanies each set_param
and get_param call with a comment that correlates internal option names
to GUI option labels. For example:

set_param(cs,'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set,
call get_param. Pass in the cs object as the first argument, followed by the
internal option name. For example, the following code excerpt tests the
setting of the Generate HTML report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')
...

6-68

Optimizing Your Model with Configuration Wizard Blocks and Scripts

To set an option in the active configuration set, call set_param. Pass in the
cs object as the first argument, followed by one or more parameter/value
pairs that specify the internal option name and its value. For example, the
following code excerpt turns off the Support absolute time option:

set_param(cs,'SupportAbsoluteTime','off');

Selecting a Target. A Configuration Wizard script must select a target
configuration. The example script uses the ERT target as a default. The script
first stores string variables that correspond to the required System target
file, Template makefile, and Make command settings:

stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string
to the switchTarget function:

switchTarget(cs,stf,[]);

The template makefile and make command options are set by set_param calls:

set_param(cs,'TemplateMakefile',tmf);
set_param(cs,'MakeCommand',mc);

To select a target, your custom script needs only to set up the string variables
stf, tmf, and mc and pass them to the appropriate calls, as above.

Obtaining Target and Configuration Set Information. The following
utility functions and properties are provided so that your code can obtain
information about the current target and configuration set, with the cs object:

• isValidParam(cs, 'option'): The option argument is an internal option
name. isValidParam returns true if option is a valid option in the context
of the active configuration set.

• getPropEnabled(cs, 'option'): The option argument is an internal
option name. Returns true if this option is enabled (that is, writable).

• IsERTTarget property: Your code can detect whether or not the currently
selected target is derved from the ERT target is selected by checking the
IsERTTarget property, as follows:

6-69

6 Advanced Code Generation Techniques

isERT = strcmp(get_param(cs,'IsERTTarget'),'on');

This information can be used to determine whether or not the script should
configure ERT-specific options, for example:

if isERT
set_param(cs,'ZeroExternalMemoryAtStartup','off');
set_param(cs,'ZeroInternalMemoryAtStartup','off');
set_param(cs,'InitFltsAndDblsToZero','off');
set_param(cs,'InlinedParameterPlacement',...

'NonHierarchical');
set_param(cs,'NoFixptDivByZeroProtection','on')

end

Invoking a Script from the MATLAB Command Prompt
Like any other M-file, Configuration Wizard scripts can be run from the
MATLAB command prompt. (The Configuration Wizard blocks are provided
as a graphical convenience, but are not essential.)

Before invoking the script, you must open a model and instantiate a cs object
to pass in as an argument to the script. After running the script, you can
invoke the build process with the rtwbuild command. The following example
opens, configures, and builds a model.

open my_model;
cs = getActiveConfigSet ('my_model');
rtwsampleconfig(cs);
rtwbuild('my_model');

6-70

Replacement of STF_rtw_info_hook Mechanism

Replacement of STF_rtw_info_hook Mechanism
Prior to MATLAB Release 14, custom targets supplied target-specific
information with a hook file (referred to as STF_rtw_info_hook.m).
The STF_rtw_info_hook specified properties such as word sizes for
integer data types (for example, char, short, int, and long), and C
implementation-specific properties of the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog. Using this
dialog, you can specify all properties that were formerly specified in your
STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files continue to
operate correctly. However, you should convert your target and models
to use of the Hardware Implementation pane. See the “Hardware
Implementation Options” section of the Real-Time Workshop documentation.

6-71

6 Advanced Code Generation Techniques

Optimizing Task Scheduling for RTOS Targets
Using the rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multi-rate, multitasking model, thereby
improving performance of the generated code.

To understand the optimization that is available for an RTOS target, consider
how the ERT target schedules tasks for bare-board targets (where no RTOS
is present). The ERT target maintains scheduling counters and event flags
for each sub-rate task. The scheduling counters are implemented within the
real-time model (rtM) data structure as arrays, indexed on task identifier
(tid).

The scheduling counters are updated by the base-rate task. The counters
are, in effect, clock rate dividers that count up the sample period associated
with each sub-rate task. When a given sub-rate counter reaches a value
that indicates it has a hit, the sample period for that rate has elapsed and
the counter is reset to zero. When this occurs, the sub-rate task must be
scheduled for execution.

The event flags indicate whether or not a given task is scheduled
for execution. For a multi-rate, multitasking model, the event flags
are maintained by the model_SetEventsForThisBaseStep function.
model_SetEventsForThisBaseStep invokes the macro rtmStepTask to
test the value of each counter. rtmStepTask returns TRUE when a counter
indicates that a task’s sample period has elapsed. When this occurs,
model_SetEventsForThisBaseStep sets the event flag for that task.

On each time step, the counters and event flags are updated and the base-rate
task executes. Then, the scheduling flags are checked in tid order, and any
task whose event flag is set is executed. This ensures that tasks are executed
in order of priority.

For bare-board targets that cannot rely on an external RTOS, the event
flags are mandatory to allow overlapping task preemption. However, an
RTOS target uses the operating system itself to manage overlapping task
preemption, making the maintenance of the event flags redundant. An RTOS
target can eliminate the call to model_SetEventsForThisBaseStep, and
examine the counters by invoking rtmStepTask directly.

6-72

Optimizing Task Scheduling for RTOS Targets

Using rtmStepTask
The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

• rtm: pointer to the real-time model structure (rtM)

• idx: task identifier (tid) of the task whose scheduling counter is to be
tested

rtmStepTask returns TRUE if the task’s scheduling counter equals zero,
indicating that the task should be scheduled for execution on the current time
step. Otherwise, it returns FALSE.

If your target supports the Generate an example main program
option, you can generate calls to rtmStepTask using the TLC function
RTMTaskRunsThisBaseStep. The following example, from ertmainlib.tlc,
is designed for the VxWorks RTOS. A loop iterates over each subrate task.
rtmStepTask is called for each task. If rtmStepTask returns TRUE, the
VxWorks semGive() function is called, and VxWorks schedules the task to
run.

%assign ifarg = RTMTaskRunsThisBaseStep("i")
for (i = 1; i < %<FcnNumST()>; i++) {

if (%<ifarg>) {
semGive(taskSemList[i]);
if (semTake(taskSemList[i],NO_WAIT) != ERROR) {

logMsg("Rate for SubRate task %d is too
fast.\n",i,0,0,0,0,0);

semGive(taskSemList[i]);
}

}
}

6-73

6 Advanced Code Generation Techniques

Suppressing the Redundant Scheduling Calls
Redundant scheduling calls are still generated by default for backward
compatibility. To change this setting and suppress them, add the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

6-74

7

Requirements, Restrictions,
Target Files

Requirements and Restrictions
(p. 7-2)

Conditions your model must meet
for use with Real-Time Workshop
Embedded Coder.

System Target File and Template
Makefiles (p. 7-4)

Summary of control files used by
Real-Time Workshop Embedded
Coder.

7 Requirements, Restrictions, Target Files

Requirements and Restrictions
• For code generation with Real-Time Workshop Embedded Coder,

configure your model for the following options on the Solver pane of the
Configuration Parameters dialog (or Model Explorer):

- Type: fixed-step

- Solver: You can select any available solver algorithm.

- Tasking mode for periodic sample times: When the model is
single-rate, you must select the SingleTasking or Auto mode. Permitted
Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-14 indicates permitted solver modes for single-rate
and multirate models.

• If you use blocks that have a dependency on absolute time in a program,
you should properly specify the Application lifespan (days) parameter
on the Optimization pane. (See “Blocks That Depend on Absolute Time”
in the Real-Time Workshop documentation for a list of such blocks.) You
can use these blocks in applications that run for extremely long periods,
with counters that provide accurate and overflow-free absolute time values,
provided that you specify a long enough lifespan. If you are designing a
program that is intended to run indefinitely, specify Application lifespan
(days) as inf. This generates a 64 bit integer counter. For an application
whose sample rate is 1000 MHz, a 64 bit counter will not overflow for more
than 500 years.

• You can use any Simulink blocks in your models, except for blocks not
supported by the Embedded-C format, as follows:

- MATLAB Fcn

- M-file and Fortran S-functions that are not inlined with TLC

Note that use of certain blocks is not recommended for production code
generation for embedded systems. To view a table that summarizes
characteristics of blocks in the Simulink and Fixed-Point block libraries,
execute the following command at the MATLAB command line:

showblockdatatypetable

Refer to the “Recommended for Production Code?” column of the table.

7-2

Requirements and Restrictions

• You can use both inlined and non-inlined S-functions with Real-Time
Workshop Embedded Coder. However, inlined S-functions are often
advantageous in production code generation, for example in implementing
device drivers. See “Tradeoffs in Device Driver Development” in the
Developing Embedded Targets document for a discussion of the pros and
cons.

7-3

7 Requirements, Restrictions, Target Files

System Target File and Template Makefiles
The Real-Time Workshop Embedded Coder system target file is ert.tlc.

Real-Time Workshop provides template makefiles for the Real-Time Workshop
Embedded Coder in the following development environments:

• ert_bc.tmf — Borland C

• ert_intel.tmf — Intel compiler

• ert_lcc.tmf — LCC compiler

• ert_tornado.tmf — Tornado (VxWorks)

• ert_unix.tmf — UNIX host

• ert_vc.tmf — Visual C

• ert_msvc.tmf — Visual C, project file only

• ert_watc.tmf — Watcom C

7-4

Index

IndexA
absolute time 3-33
ASAP2 file generation 3-38
auto-configuring targets

purpose of 6-19

C
code generation options

Application lifespan (days) 3-51
Create Simulink (S-Function) block 3-37
Custom comments 3-19
Data exchange 3-37
Data initialization 3-50
External mode 3-59
File customization template 3-40
Fixed-point exception protection 3-51
Generate an example main program 3-40
Generate HTML report 3-16
Generate reusable code 3-35
Generate scalar inlined parameters 3-22
GRT compatible call interface 3-34
Identifier format control 3-21
Ignore custom storage classes 3-17
Include comments 3-18
Include hyperlinks to model 3-16
Launch report after coder generation

completes 3-16
MAT-file logging 3-37

clearing 3-55
MAT-file variable name modifier 3-38
Maximum identifier length 3-22
Minimum mangle length 3-22
Parameter structure 3-49
Pass root-level I/O as 3-36
Requirements in block comments 3-20
Reusable code error diagnostic 3-36
Simulink block descriptions 3-19
Simulink data object descriptions 3-19

Single output/update function 3-35
clearing 2-30

Stateflow object descriptions 3-19
Support absolute time 3-33
Support complex numbers 3-33
Support continuous time 3-34

for using continuous time blocks 3-5
limitations 3-65

Support floating-point numbers 3-33
Support non-finite numbers 3-33
Support non-inlined S-functions 3-34
Suppress error status in real-time model

data structure 3-37
Target floating-point math

environment 3-32
Terminate function required 3-35

code generation report 3-61
code modules, generated 2-4
code templates

example of use 6-41
generating code with 6-41
structure of 6-40
summary of API 6-50

code, user-written 2-7
Configuration Parameters dialog box 3-4
Configuration Wizard buttons 6-59
custom code generation

of file banners 6-53
with code templates 6-39

custom file processing (CFP) template 3-40
custom storage classes

assigning to data 4-49
code generation with 4-49
instance-specific attributes 4-47

D
Data exchange options

External mode 3-38
Generate ASAP2 file 3-38

Index-1

Index

Generate C API for
parameters/signals 3-38

data initialization
of floats and doubles 3-50
of internal states 3-50
of root-level I/O ports 3-50

data structures
real-time model 2-2

data templates 3-39
demos for Real-Time Workshop Embedded

Coder 1-8

E
elapsed time 3-33
entry points, model 2-22
ERT target

optimized for fixed-point 6-23
optimized for floating-point 6-23

ert_main.c 2-26
ert_main.cpp 2-26
External mode support 3-59

F
file banners, generation of 6-53
file packaging 2-4

G
generated code

modules 2-4
GetSet custom storage class 4-38

H
Hardware Implementation parameters

configuration of 3-53
hook files

STF_make_rtw_hook
auto-configuring models with 6-20
customizing build process with 6-8

HTML code generation report 3-61

I
identifier format control parameters 3-25
identifier format control tokens 3-23
installation of Real-Time Workshop Embedded

Coder 1-7
integer-only code 3-55
integer-only code generation 3-55
interrupts, servicing 2-11

M
main program (ert_main)

generated 2-8
modifying 2-12
operation of 2-12
static module 2-26
VxWorks example 2-20

math, floating-point 3-32
model entry points 2-22

model_initialize 2-24
model_SetEventsForThisBaseStep 2-25
model_step 2-22
model_terminate 2-24

modifying rt_OneStep 2-18

N
name mangling 3-25

P
parameter structure

hierarchical 3-49
non-hierarchical 3-49

program execution

Index-2

Index

main program 2-12
rt_OneStep 2-13

multi-rate multitasking operation 2-15
multi-rate single-tasking

operation 2-18
reentrancy 2-17
single-rate single-tasking

operation 2-14
pure integer code 3-55

and external mode 3-60

R
rate grouping 2-16
real-time model data structure 2-2
reentrant code 3-35
requirements for Real-Time Workshop

Embedded Coder programs 7-2
restrictions on Real-Time Workshop Embedded

Coder programs 7-2
reusable code 3-35

S
S-function wrapper generation 3-64

option for 3-37
solver modes, permitted 2-13
source code files, generated 2-4
stack space allocation 3-57
STF_make_rtw_hook function

arguments to 6-9
system target files 7-4

T
task identifier (tid) 2-16
template makefiles 7-4
tid 2-16
timer interrupts 2-11

V
virtualized output port optimization 3-56
VxWorks deployment example 2-20

Index-3

	toc
	Getting Started
	What Is Real-Time Workshop Embedded Coder?
	Real-Time Workshop Embedded Coder Feature Summary
	What You Need to Know to Use This Product
	Prerequisites
	Real-Time Workshop Embedded Coder Documentation Collection
	Related Documentation

	Installing Real-Time Workshop Embedded Coder
	Real-Time Workshop Embedded Coder Demos

	Data Structures and Program Execution
	Data Structures and Code Modules
	Real-Time Model Data Structure
	rtModel Accessor Macros

	Code Modules
	Generated Code Modules
	User-Written Code Modules

	Generating the Main Program

	Program Execution
	Stand-Alone Program Execution
	Main Program
	Overview of Operation
	Guidelines for Modifying the Main Program

	rt_OneStep
	Overview of Operation
	Single-Rate Singletasking Operation
	Multi-Rate Multitasking Operation
	Multi-Rate Singletasking Operation
	Guidelines for Modifying rt_OneStep

	VxWorks Example Main Program Execution
	Overview
	Task Management
	Single-Rate Singletasking Operation
	Multi-Rate Multitasking Operation
	Multi-Rate Singletasking Operation

	Model Entry Points
	model_step
	Default Calling Interface
	Operation

	model_initialize
	Default Calling Interface
	Operation

	model_terminate
	Default Calling Interface
	Operation

	model_SetEventsForThisBaseStep
	Calling Interface
	Operation

	The Static Main Program Module
	Rate Grouping and the Static Main Program
	Modifying the Static Main Program

	Rate Grouping Compliance and Compatibility Issues
	Main Program Compatibility
	Making Your S-Functions Rate Grouping Compliant
	Listing 1: Outputs Code Generation Without Rate Grouping
	Listing 2: Outputs Code Generation With Rate Grouping

	Code Generation Options and Optimizations
	Accessing the ERT Target Options
	Viewing ERT Target Options in the Configuration Parameters Dialo

	Support for Continuous Time Blocks and Solvers
	Continuous Block Support
	Continuous Solver Support

	Mapping Application Requirements to Configuration Options
	Guide to the ERT Target Options
	Real-Time Workshop Pane
	Target Selection Subpane
	Documentation Subpane
	Build Process Subpane
	Custom Storage Class Subpane

	Comments Pane
	Overall Control Subpane
	Auto Generated Comments Subpane
	Custom Comments Subpane

	Symbols Pane
	Auto-Generated Identifier Naming Rules Subpane
	Simulink Data Object Naming Rules Subpane
	Specifying Identifier Formats
	Name Mangling
	Traceability
	Minimizing Name Mangling
	Model Referencing Considerations
	Exceptions to Identifier Formatting Conventions
	Identifier Format Control Parameters Limitations

	Interface Pane
	Software Environment Subpane
	Code Interface Subpane
	Verification Subpane
	Data Exchange Subpane

	Templates Pane
	Code Templates and Data Templates Subpanes
	Custom Templates Subpane

	Data Placement Pane
	Data Type Replacement Pane
	Memory Sections Pane
	Optimization Pane
	Code Generation Subpane
	Data Initialization Subpane
	Integer and Fixed-Point Subpane
	Simulation and Code Generation Subpane

	Tips for Optimizing the Generated Code
	Use Auto-Optimized Targets
	Use Configuration Wizard Blocks
	Set Hardware Implementation Parameters Correctly
	Remove Unnecessary Initialization Code
	Generate Pure Integer Code If Possible
	Disable MAT-File Logging
	Use the Virtualized Output Ports Optimization
	Use Stack Space Allocation Options
	Using External Mode with the ERT Target
	Memory Management
	Generation of Pure Integer Code with External Mode

	Generating a Code Generation Report
	Automatic S-Function Wrapper Generation
	S-Function Wrapper Generation Limitations
	Generating an S-Function Wrapper

	Exporting Function-Call Subsystems
	Exported Subsystems Demo
	Additional Information
	Requirements for Exporting Function-Call Subsystems
	Requirements for All Exported Subsystems
	Requirements for Exported Virtual Subsystems

	Techniques for Exporting Function-Call Subsystems
	Optimizing Exported Function-Call Subsystems
	Exporting Function-Call Subsystems That Depend on Elapsed Time
	Function-Call Subsystem Export Example
	Function-Call Subsystems Export Limitations

	Nonvirtual Subsystem Modular Function Code Generation
	Configuring Nonvirtual Subsystems for Generating Modular Functio
	Examples of Modular Function Code for Nonvirtual Subsystems
	H File Differences for Nonvirtual Subsystem Function Data Separa
	C File Differences for Nonvirtual Subsystem Function Data Separa

	Nonvirtual Subsystem Modular Function Code Limitations

	Custom Storage Classes
	Introduction to Custom Storage Classes
	Custom Storage Classes and Simulink Data Objects
	Predefined CSCs
	Setting the Custom Storage Class Properties
	Generating Code with CSCs
	Set Model Properties
	Instantiate Signal Objects

	Designing Custom Storage Classes
	Custom Storage Class Designer Overview
	Using the Custom Storage Class Designer
	Selecting a Data Class Package
	Selecting and Maintaining CSC and Memory Section Definitions
	Editing Properties of CSCs
	Editing Memory Section Definitions
	Previewing Generated Code
	Validating CSC Definitions
	Saving Your Definitions

	Creating Packages with CSC Definitions
	Defining Advanced Custom Storage Class Types
	Create Your Own Parameter and Signal Classes
	Create a Custom Attributes Class for Your CSC (Optional)
	Write TLC Code for Your CSC
	Register Custom Storage Class Definitions

	GetSet Custom Storage Class for Data Store Memory
	Code Generation Example

	Requirements and Restrictions for Use of CSCs
	Setting Related Code Generation Options
	Restrictions
	Use of CSCs with Model Referencing

	Older Custom Storage Classes (Prior to Release 14)
	Simulink.CustomParameter Class
	Simulink.CustomSignal Class
	Instance Specific Attributes for Older Storage Classes
	Assigning a Custom Storage Class to Data
	Code Generation with Older Custom Storage Classes
	Compatibility Issues for Older Custom Storage Classes
	Converting Older Packages to Use CSC Registration Files

	Memory Sections
	Introduction to Memory Sections
	Memory Sections Demo
	Additional Information

	Requirements for Defining Memory Sections
	Defining Memory Sections
	Specifying the Memory Section Name
	Specifying a Qualifier for Custom Storage Class Data Definitions
	Specifying Comment and Pragma Text
	Surrounding Individual Definitions with Pragmas
	Including Identifier Names in Pragmas

	Assigning Memory Sections to Custom Storage Classes
	Applying Memory Sections to Model-Level Functions and Internal D
	Applying Memory Sections to Atomic Subsystems
	Examples of Generated Code with Memory Sections
	Model-Level Data Structures
	Model-Level Functions
	Subsystem Function

	Advanced Code Generation Techniques
	Introduction
	Code Generation with User-Defined Data Types
	Specifying Type Definition Location
	Omitting a HeaderFile Value
	Specifying a HeaderFile Value

	Using User-Defined Data Types for Code Generation

	Customizing the Target Build Process with the STF_make_rtw Hook
	File and Function Naming Conventions
	STF_make_rtw_hook.m Function Prototype and Arguments
	Applications for STF_make_rtw_hook.m
	Using STF_make_rtw_hook.m for Your Build Procedure

	Customizing the Target Build Process with sl_customization.m
	Registering Build Process Hook Functions Using sl_customization.
	Variables Available for sl_customization.m Hook Functions
	Example Build Process Customization Using sl_customization.m
	Example 1: sl_customization.m for Real-Time Workshop Build Proce
	Example 2: CustomRTWEntryHook.m
	Example 3: CustomRTWPostProcessHook.m

	Auto-Configuring Models for Code Generation
	Utilities for Accessing Model Configuration Properties
	Using set_param

	Automatic Model Configuration Using ert_make_rtw_hook
	ert_make_rtw_hook Limitation

	Using the Auto-Configuration Utilities

	Generating Efficient Code with Optimized ERT Targets
	Default ERT Target
	Optimized Fixed-Point ERT Target
	Optimized Floating-Point ERT Target
	Using the Optimized ERT Targets
	Configuring Hardware Implementation Properties
	Generating Code

	Custom File Processing
	Custom File Processing Components
	Custom File Processing User Interface Options
	Code Generation Template (CGT) Files
	Default CGT file
	CGT File Structure
	Built-In Tokens and Sections
	Subsections

	Using Custom File Processing (CFP) Templates
	CFP Template Structure
	Generating Source and Header Files with a CFP Template
	Generating Code with a CFP Template
	Analysis of the Example CFP Template and Generated Code
	Generating a Custom Section

	Code Template API Summary
	Generating Custom File Banners
	Creating a Custom File Banner Template
	Customizing a CGT File for Custom Banner Generation

	Optimizing Your Model with Configuration Wizard Blocks and Scrip
	Configuration Wizards vs. Auto-Configuring Targets
	Adding a Configuration Wizard Block to Your Model
	Using Configuration Wizard Blocks
	Creating a Custom Configuration Wizard Block
	Setting Up a Configuration Wizard Block
	Creating a Configuration Wizard Script
	Invoking a Script from the MATLAB Command Prompt

	Replacement of STF_rtw_info_hook Mechanism
	Optimizing Task Scheduling for RTOS Targets
	Using rtmStepTask
	Suppressing the Redundant Scheduling Calls

	Requirements, Restrictions, Target Files
	Requirements and Restrictions
	System Target File and Template Makefiles

	Index

	tables
	Real-Time Workshop Embedded Coder File Packaging
	Permitted Solver Modes for Real-Time Workshop Embedded Coder Tar
	Function Prototypes for model_step
	Mapping of Application Requirements to Configuration Parameters
	Identifier Format Tokens
	Identifier Format Control Parameter Values
	How Name Mangling Strings Are Computed
	Summary of Predefined Simulink CSCs for Signal and Parameter Obj
	Summary of Instance-Specific Properties for CSCs
	GetSet Storage Class Properties
	Const, ConstVolatile, and Volatile Storage Classes (Prior to Rel
	ExportToFile, ImportFromFile, and Internal Storage Classes (Prio
	BitField, Define, and Struct Storage Classes (Prior to Release 1
	Additional Properties of Custom Storage Classes (Prior to Releas
	Model-Level Memory Section Assignments and Definitions
	Subsystem-Level Memory Section Assignments and Definitions
	Built-In CGT Tokens and Corresponding Code Sections
	Subsections Defined for Built-In Sections
	Code Template API Functions
	Summary of Tokens for File Banner Generation

